Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Lityńska is active.

Publication


Featured researches published by Anna Lityńska.


Biochimica et Biophysica Acta | 2010

Cell migration-The role of integrin glycosylation

Marcelina Janik; Anna Lityńska; Pierre Vereecken

BACKGROUND Cell migration is an essential process in organ homeostasis, in inflammation, and also in metastasis, the main cause of death from cancer. The extracellular matrix (ECM) serves as the molecular scaffold for cell adhesion and migration; in the first phase of migration, adhesion of cells to the ECM is critical. Engagement of integrin receptors with ECM ligands gives rise to the formation of complex multiprotein structures which link the ECM to the cytoplasmic actin skeleton. Both ECM proteins and the adhesion receptors are glycoproteins, and it is well accepted that N-glycans modulate their conformation and activity, thereby affecting cell-ECM interactions. Likely targets for glycosylation are the integrins, whose ability to form functional dimers depends upon the presence of N-linked oligosaccharides. Cell migratory behavior may depend on the level of expression of adhesion proteins, and their N-glycosylation that affect receptor-ligand binding. SCOPE OF REVIEW The mechanism underlying the effect of integrin glycosylation on migration is still unknown, but results gained from integrins with artificial or mutated N-glycosylation sites provide evidence that integrin function can be regulated by changes in glycosylation. GENERAL SIGNIFICANCE A better understanding of the molecular mechanism of cell migration processes could lead to novel diagnostic and therapeutic approaches and applications. For this, the proteins and oligosaccharides involved in these events need to be characterized.


Journal of Biological Chemistry | 2008

Tetraspanin CD151 regulates glycosylation of α3β1 integrin

Gouri Baldwin; Vera Novitskaya; Rafal Sadej; Ewa Pocheć; Anna Lityńska; Christoph Hartmann; Janelle Williams; Leonie K. Ashman; Johannes A. Eble; Fedor Berditchevski

The tetraspanin CD151 forms a stoichiometric complex with integrin α3β1 and regulates its endocytosis. We observed that down-regulation of CD151 in various epithelial cell lines changed glycosylation of α3β1. In contrast, glycosylation of other transmembrane proteins, including those associated with CD151 (e.g. α6β1, CD82, CD63, and emmprin/CD147) was not affected. The detailed analysis has shown that depletion of CD151 resulted in the reduction of Fucα1–2Gal and bisecting GlcNAc-β(1→4) linkage on N-glycans of the α3 integrin subunit. The modulatory activity of CD151 toward α3β1 was specific, because stable knockdown of three other tetraspanins (i.e. CD9, CD63, and CD81) did not affect glycosylation of the integrin. Analysis of α3 glycosylation in CD151-depleted breast cancer cells with reconstituted expression of various CD151 mutants has shown that a direct contact with integrin is required but not sufficient for the modulatory activity of the tetraspanin toward α3β1. We also found that glycosylation of CD151 is also critical; Asn159 → Gln mutation in the large extracellular loop did not affect interactions of CD151 with other tetraspanins or α3β1 but negated its modulatory function. Changes in the glycosylation pattern of α3β1 observed in CD151-depleted cells correlated with a dramatic decrease in cell migration toward laminin-332. Migration toward fibronectin or static adhesion of cells to extracellular matrix ligands was not affected. Importantly, reconstituted expression of the wild-type CD151 but not glycosylation-deficient mutant restored the migratory potential of the cells. These results demonstrate that CD151 plays an important role in post-translation modification of α3β1 integrin and strongly suggest that changes in integrin glycosylation are critical for the promigratory activity of this tetraspanin.


Melanoma Research | 2009

Evaluation of the prognostic significance of serum galectin-3 in American Joint Committee on Cancer stage Iii and stage Iv melanoma patients

Pierre Vereecken; Ahmad Awada; Stefan Suciu; Gilberto de Castro; Renato Morandini; Anna Lityńska; Danielle Liénard; Khaled Ezzedine; Ghanem Elias Ghanem; Michel Heenen

Galectin-3 (Gal-3) is a member of the &bgr;-galactoside-binding lectins family and has been implicated in angiogenesis, tumor invasion, and metastatic process in vitro and in vivo. As we showed recently that advanced melanoma patients presented high serum level of Gal-3, we investigated the association of this protein with the outcome of melanoma patients. Whether this protein could be a biomarker has not been assessed, and we compared the prognostic value of serum Gal-3 in multivariate analysis with lactate dehydrogenase, C-reactive protein and S100B. We conclude that Gal-3 could be of prognostic value in melanoma patients; more precisely, this protein has a strong independent prognostic signification with a cut-off value of 10 ng/ml. After these data, we believe that serum Gal-3 measurement can have an important role in the follow-up and management of advanced American Joint Commission on Cancer stage III and stage IV melanoma patients. Further studies will uncover whether Gal-3 will be able to open new therapeutic perspectives.


Melanoma Research | 2001

Comparison of the lectin-binding pattern in different human melanoma cell lines.

Anna Lityńska; Przybyło M; Pocheć E; Hoja-Łukowicz D; Ciołczyk D; Piotr Laidler; Gil D

Glycosylation is generally altered in tumour cells in comparison with their normal counterparts. These alterations are thought to be important because they contribute to the abnormal behaviour of cancer cells. Therefore, we have comparatively analysed the glycoproteins in cell extracts from human melanoma (primary site – WM35; metastatic sites – WM239, WM9 and A375) cell lines using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and lectin staining. The glycoprotein pattern of the WM35 line differed from that of the other cell lines in having less proteins that reacted with Sambucus nigra, Maackia amurensis and Phaseolus vulgaris agglutinins. A glycoprotein of about 70 kDa had a significantly increased reaction with Sambucus nigra agglutinin in all the cell lines from metastatic sites. In the WM9, WM239 and A375 cell lines, additional bands (160–100 kDa) were stained with Phaseolus vulgaris agglutinin, suggesting that cells from metastatic sites contain more glycoproteins with β1–6 branches. On the other hand, only minor changes in the reaction with Galanthus nivalis agglutinin, a mannose-specific lectin, were detected. Among the proteins showing different lectin staining, one, with an apparent molecular weight of 133 kDa, was recognized by antibodies as N-cadherin. The present results suggest that in human melanoma the expression of branched and sialylated complex type N-oligosaccharides consistently increased in cells from metastatic sites, and support the view that carbohydrates are associated with the acquisition of the metastatic potential of tumour cells.


Glycoconjugate Journal | 2003

The structure of the oligosaccharides of N-cadherin from human melanoma cell lines.

Dorota Ciołczyk-Wierzbicka; Angela Amoresano; Annarita Casbarra; Dorota Hoja-Łukowicz; Anna Lityńska; Piotr Laidler

N-cadherin is calcium-dependent cell adhesion molecule that mediates cell-cell adhesion and also modulates cell migration and tumor invasion. N-cadherin is a heavily glycosylated protein. Many studies have demonstrated that malignant transformation of a number of cell types correlates with changes of cell surface N-linked oligosacharides. We have studied the carbohydrate profile of N-cadherin synthesized in human melanoma cell lines and the effect of this protein and complex N-glycans on in vitro migration of melanoma cells from the primary tumor site—WM35 and from different metastatic sites WM239 (skin), WM9 (lymph node), and A375 (solid tumor). N-cadherin was immunoprecipitated with anti-human N-cadherin polyclonal antibodies. Characterization of its carbohydrate moieties was carried out by SDS-PAGE electrophoresis and blotting, followed by immunochemical identification of the N-cadherin polypeptides and on-blot deglycosylation using PNGase F for glycan release. N-glycans were separated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and their structures identified by the computer matching of the resulting masses with those derived from a sequence database. The assay of in vitro chemotaxic cell migration was performed using QCM™ Cell Invasion Assay (Chemicon).N-cadherin from WM35 (primary tumor site) possessed high-mannose and biantennary complex type glycans with α2–6 linked sialic acid. N-cadherin from WM239, WM9, and A375 cell lines possessed mostly tri- or tetra-antennary complex type glycans. In addition, N-cadherin from WM9 (lymph node metastatic site) and A375 (solid tumor metastatic site) contained heavily α-fucosylated complex type chains with α2,3 linked sialic acid. Blocking of N-cadherin-mediated intercellular interaction by N-cadherin-specific antibodies significantly (of about 40%) inhibited migration of melanoma cells. Inhibition of synthesis of complex type N-glycans by swainsonine (mannosidase II inhibitor) led to 50% decrease of cell migration.The results indicated differences between N-cadherin glycans from primary and metastatic sites and confirmed influence of N-cadherin and complex -type N-glycans on in vitro migration of melanoma cells. Published in 2004.


Biochimica et Biophysica Acta | 2008

Characterisation of α3β1 and αvβ3 integrin N-oligosaccharides in metastatic melanoma WM9 and WM239 cell lines

Marcelina Kremser; Małgorzata Przybyło; Dorota Hoja-Łukowicz; Ewa Pocheć; Angela Amoresano; Andrea Carpentieri; Monika Bubka; Anna Lityńska

It is well documented that glycan synthesis is altered in some pathological processes, including cancer. The most frequently observed alterations during tumourigenesis are extensive expression of beta1,6-branched complex type N-glycans, the presence of poly-N-acetyllactosamine structures, and high sialylation of cell surface glycoproteins. This study investigated two integrins, alpha3beta1 and alpha(v)beta3, whose expression is closely related to cancer progression. Their oligosaccharide structures in two metastatic melanoma cell lines (WM9, WM239) were analysed with the use of matrix-assisted laser desorption ionisation mass spectrometry. Both examined integrins possessed heavily sialylated and fucosylated glycans, with beta1,6-branches and short polylactosamine chains. In WM9 cells, alpha3beta1 integrin was more variously glycosylated than alpha(v)beta3; in WM239 cells the situation was the reverse. Functional studies (wound healing and ELISA integrin binding assays) revealed that the N-oligosaccharide component of the tested integrins influenced melanoma cell migration on vitronectin and alpha3beta1 integrin binding to laminin-5. Additionally, more variously glycosylated integrins exerted a stronger influence on these parameters. To the best of our knowledge, this is the first report concerning structural characterisation of alpha(v)beta3 integrin glycans in melanoma or in any cancer cells.


Cancer Immunology, Immunotherapy | 2006

Characterization of glycosylation and adherent properties of melanoma cell lines

Piotr Laidler; Anna Lityńska; Dorota Hoja-Łukowicz; Maria Łabędz; Małgorzata Przybyło; Dorota Ciołczyk-Wierzbicka; Ewa Pocheć; Ewa Trębacz; Elżbieta Kremser

The repertoire of oligosaccharide components of cellular glycoproteins significantly contributes to cell adhesion and communication. In tumor cells, alteration in cellular glycosylation may play a key role in giving rise to invasive and metastatic potential. Over 100 melanoma cell lines deposited in the ESTDAB Melanoma Cell Bank (Tubingen, Germany) were studied for the characteristic glycan composition related to tumor progression. Analysis of: (1) cell adhesion to extracellular matrix proteins—fibronectin, laminin, and collagen; (2) the expression of selected glycosyltransferases—α2,3(Galβ1,3)- and α2,3(Galβ1,4)-sialyltransferases, α1,2- and α1,3-fucosyltransferases, and N-acetylglucosaminyltransferase V; (3) characterization of N-glycans was carried out on uveal (4), primary cutaneous (6), and metastatic (96) melanoma cell lines. Results showed that uveal cells did not adhere to any of the substrates and, in general, possessed less glycans containing α-2,6- and α-2,3-linked sialic acid. The average number of polypeptides bearing β-1,6-branched tri- and tetra antennary glycans(characteristic of the metastatic phenotype)were similar in uveal, primary cutaneous, and metastatic melanoma cell lines. Characterization of N-glycans may open a new perspective in the search for specific glycoproteins that could become targets for the therapeutic modulation of melanoma.


Cancer Cell International | 2002

Different glycosylation of cadherins from human bladder non-malignant and cancer cell lines

Małgorzata Przybyło; Dorota Hoja-Lukowicz; Anna Lityńska; Piotr Laidler

BackgroundThe aim of the present study was to determine whether stage of invasiveness of bladder cancer cell lines contributes to alterations in glycan pattern of their cadherins.ResultsHuman non-malignant epithelial cell of ureter HCV29, v-raf transfected HCV29 line (BC3726) and transitional cell cancers of urine bladder Hu456 and T24 were grown in cell culture. Equal amounts of protein from each cell extracts were separated by SDS-PAGE electrophoresis and were blotted on an Immobilon P membrane. Cadherins were immunodetected using anti-pan cadherin mAb and lectin blotting assays were performed, in parallel. N-oligosaccharides were analysed by specific reaction with Galanthus nivalis agglutinin (GNA), Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), Datura stramonium agglutinin (DSA), Aleuria aurantia agglutinin (AAA), Phaseolus vulgaris agglutinin (PHA-L) and wheat germ agglutinin (WGA). The cadherin from HCV29 cell line possessed bi- and/or 2,4-branched triantennary complex type glycans, some of which were α2,6-sialylated. The cadherin from BC3726 cell line exhibited exclusively high mannose type glycans. Cadherins from Hu456 and T24 cell lines expressed high mannose type glycans as well as β1,6-branched oligosaccharides with poly-N-acetyllactosamine structures and α2,3-linked sialic acid residues. Additionally, the presence of fucose and α2,6-sialic acid residues on the cadherin from T24 cell line was detected.ConclusionsThese results indicate that N-glycosylation pattern of cadherin from bladder cancer cell line undergoes modification during carcinogenesis.


Cancer Immunology, Immunotherapy | 2009

The new face of nucleolin in human melanoma

Dorota Hoja-Łukowicz; Małgorzata Przybyło; Ewa Pocheć; Anna Drabik; Jerzy Silberring; Marcelina Kremser; Dirk Schadendorf; Piotr Laidler; Anna Lityńska

Nucleolin is multifunctional protein mainly present in nucleoli but also detected in cytoplasm and plasma membranes. Extranuclear nucleolin differs from the nuclear form by its glycosylation. Studies on expression of nucleolin in breast cancer suggest a possible association to the metastatic cascade. In the present study, Vicia villosa lectin (VVL) precipitation followed by subsequent polyacrylamide gel electrophoresis and mass spectrometry analysis demonstrates nucleolin as a VVL-positive glycoprotein expressed in melanoma. The presence of VVL-positive nucleolin in the melanoma cell membrane and cytoplasm was confirmed by confocal microscopy. Using bioinformatic peptide prediction programs, nucleolin was shown to contain multiple possible MHC class-I binding peptides in its sequence which makes nucleolin an interesting melanoma marker and target for immunodiagnostic and possibly therapeutic purposes.


European Journal of Cell Biology | 2013

Expression of integrins α3β1 and α5β1 and GlcNAc β1,6 glycan branching influences metastatic melanoma cell migration on fibronectin.

Ewa Pocheć; Marcelina Janik; Dorota Hoja-Łukowicz; Paweł Link-Lenczowski; Małgorzata Przybyło; Anna Lityńska

Acquisition of metastatic potential is accompanied by changes in cell surface N-glycosylation. One of the best-studied changes is increased expression of N-acetylglucosaminyltransferase V enzyme (GnT-V) and its products, β1,6-branched N-linked oligosaccharides, observed in the tumorigenesis of many cancers. In this study we demonstrate that during the transition from the vertical growth phase (VGP) (WM793 cell line) to the metastatic stage (WM1205Lu line), β1,6 glycosylation of melanoma cell surface proteins increases as a consequence of elevated expression of the GnT-V-encoding Mgat-5 gene. Treatment with swainsonine led to reduced cell motility on fibronectin in both cell lines; the effect was stronger in metastatic cells, probably due to the higher content of GlcNAc β1,6-branched glycans on the main fibronectin receptors - integrins α5β1 and α3β1. Our results show that GlcNAc β1,6 N-glycosylation of cell surface receptors, which increases with the aggressiveness of melanoma cells, is an important factor influencing melanoma cell migration.

Collaboration


Dive into the Anna Lityńska's collaboration.

Top Co-Authors

Avatar

Ewa Pocheć

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr Laidler

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Bubka

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

Bogusław Wójczyk

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Paweł Link-Lenczowski

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Angela Amoresano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Dorota Hoja

Jagiellonian University

View shared research outputs
Researchain Logo
Decentralizing Knowledge