Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Lluveras-Tenorio is active.

Publication


Featured researches published by Anna Lluveras-Tenorio.


Chemistry Central Journal | 2012

Analysis of plant gums and saccharide materials in paint samples: Comparison of GC-MS analytical procedures and databases

Anna Lluveras-Tenorio; Joy Mazurek; Annalaura Restivo; Maria Perla Colombini; Ilaria Bonaduce

BackgroundSaccharide materials have been used for centuries as binding media, to paint, write and illuminate manuscripts and to apply metallic leaf decorations. Although the technical literature often reports on the use of plant gums as binders, actually several other saccharide materials can be encountered in paint samples, not only as major binders, but also as additives. In the literature, there are a variety of analytical procedures that utilize GC-MS to characterize saccharide materials in paint samples, however the chromatographic profiles are often extremely different and it is impossible to compare them and reliably identify the paint binder.ResultsThis paper presents a comparison between two different analytical procedures based on GC-MS for the analysis of saccharide materials in works-of-art. The research presented here evaluates the influence of the analytical procedure used, and how it impacts the sugar profiles obtained from the analysis of paint samples that contain saccharide materials. The procedures have been developed, optimised and systematically used to characterise plant gums at the Getty Conservation Institute in Los Angeles, USA (GCI) and the Department of Chemistry and Industrial Chemistry of the University of Pisa, Italy (DCCI). The main steps of the analytical procedures and their optimisation are discussed.ConclusionsThe results presented highlight that the two methods give comparable sugar profiles, whether the samples analysed are simple raw materials, pigmented and unpigmented paint replicas, or paint samples collected from hundreds of centuries old polychrome art objects. A common database of sugar profiles of reference materials commonly found in paint samples was thus compiled. The database presents data also from those materials that only contain a minor saccharide fraction. This database highlights how many sources of saccharides can be found in a paint sample, representing an important step forward in the problem of identifying polysaccharide binders in paint samples.


PLOS ONE | 2012

The Development of a New Analytical Model for the Identification of Saccharide Binders in Paint Samples

Anna Lluveras-Tenorio; Joy Mazurek; Annalaura Restivo; Maria Perla Colombini; Ilaria Bonaduce

This paper describes a method for reliably identifying saccharide materials in paintings. Since the 3rd millennium B.C., polysaccharide materials such as plant gums, sugar, flour, and honey were used as binding media and sizing agents in paintings, illuminated manuscripts, and polychrome objects. Although it has been reported that plant gums have a stable composition, their identification in paint samples is often doubtful and rarely discussed. Our research was carried out independently at two different laboratories: the Getty Conservation Institute in Los Angeles, USA (GCI) and the Department of Chemistry and Industrial Chemistry of the University of Pisa, Italy (DCCI). It was shown in a previous stage of this research that the two methods give highly comparable data when analysing both reference paint samples and paint layers from art objects, thus the combined data was used to build a large database. In this study, the simultaneous presence of proteinaceous binders and pigments in fresh and artificially aged paint replicas was investigated, and it highlighted how these can affect the sugar profile of arabic, tragacanth, and fruit tree gums. The environmental contamination due to sugars from various plant tissues is also discussed. The results allowed the development of a new model for the reliable identification of saccharide binders in paintings based on the evaluation of markers that are stable to ageing and unaffected by pigments. This new model was applied to the sugar profiles obtained from the analysis of a large number of samples from murals, easel paintings, manuscripts, and polychrome objects from different geographical areas and dating from the 13th century BC to the 20th century AD, thus demonstrating its reliability.


Analytica Chimica Acta | 2014

Preparation of thin-sections of painting fragments: classical and innovative strategies.

Emeline Pouyet; Anna Lluveras-Tenorio; Austin Nevin; Daniela Saviello; F. Sette; Marine Cotte

For more than a century, the analyses of painting fragments have been carried out mainly through the preparation of thick resin-embedded cross-sections. Taking into account the development of innovative micro-analytical imaging techniques, alternatives to this standard preparation method are considered. Consequently, dedicated efforts are required to develop preparation protocols limiting the risks of chemical interferences (solubilisation, reduction/oxidation or other reactions) which modify the sample during its preparation, as well as the risks of analytical interferences (overlap of detected signals coming from the sample and from materials used in the preparation). This study focuses particularly on the preparation of thin-sections (1-20 μm) for single or combined fourier transform infrared (FTIR) spectroscopy and X-ray 2D micro-analysis. A few strategies specially developed for the μFTIR analysis of painting cross-sections have already been reported and their potential extrapolation to the preparation of thin-sections is discussed. In addition, we propose two new specific methods: (i) the first is based on a free-embedding approach, ensuring a complete chemical and analytical neutrality. It is illustrated through application on polymeric design objects corpus; (ii) the second is based on a barrier coating approach which strengthens the sample and avoids the penetration of the resin into the sample. The barrier coating investigated is a silver chloride salt, an infrared transparent material, which remains malleable and soft after pellet compression, enabling microtoming. This last method was successfully applied to the preparation of a fragment from a gilded Chinese sculpture (15th C.) and was used to unravel a unique complex stratigraphy when combining μFTIR and μXRF.


PLOS ONE | 2017

GC/MS and proteomics to unravel the painting history of the lost Giant Buddhas of Bāmiyān (Afghanistan)

Anna Lluveras-Tenorio; Eugenio Galano; Catharina Blaensdorf; Erwin Emmerling; Maria Perla Colombini; Leila Birolo; Ilaria Bonaduce

A chemical investigation of the organic paint binders of the Giant Buddhas of Bāmiyān was performed using an analytical approach based on mass spectrometry, combining traditional gas chromatography/mass spectrometry protocols with advanced proteomics methodologies. The research was carried out on a selection of rescued fragments. The data revealed the use of egg proteins as the paint binders of the original layers, in accordance with the traditional use of this proteinaceous medium in antiquity, spanning from the Mediterranean basin to the Far East, and already in the Bronze Age. Egg tempera was thus known to artists of the region in the first centuries AD, probably also due to the position of the Bāmiyān valley, which was connected to the Silk Road. Milk was found in the first historical overpaintings. A new proteomics approach was used, which was able to identify the source of the milk proteins present in the restoration layers, despite their age and degradation. In particular cow’s and goats milk were both found, in agreement with the documented presence of rich pastures in the Bāmiyān valley when the historical restorations were carried out. Investigating the materials of the Giant Buddhas not only enabled us to obtain isolated data on these invaluable works of art, which are now lost, but contributes to understanding the big “puzzle” of our past and the development of our culture, by implementing and supporting written sources, stylistic and anthropological studies with molecular data.


Analytica Chimica Acta | 2018

Development of a GC/MS method for the qualitative and quantitative analysis of mixtures of free fatty acids and metal soaps in paint samples

Jacopo La Nasa; Francesca Modugno; Matteo Aloisi; Anna Lluveras-Tenorio; Ilaria Bonaduce

In this paper we present a new analytical GC/MS method for the analysis of mixtures of free fatty acids and metal soaps in paint samples. This approach is based on the use of two different silylating agents: N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and 1,1,1,3,3,3-hexamethyldisilazane (HMDS). Our experimentation demonstrated that HMDS does not silylate fatty acid carboxylates, so it can be used for the selective derivatization and GC/MS quantitative analysis of free fatty acids. On the other hand BSTFA is able to silylate both free fatty acids and fatty acids carboxylates. The reaction conditions for the derivatization of carboxylates with BSTFA were thus optimized with a full factorial 32 experimental design using lead stearate and lead palmitate as model systems. The analytical method was validated following the ICH guidelines. The method allows the qualitative and quantitative analysis of fatty acid carboxylates of sodium, calcium, magnesium, aluminium, manganese, cobalt, copper, zinc, cadmium, and lead and of lead azelate. In order to exploit the performances of the new analytical method, samples collected from two reference paint layers, from a gilded 16th century marble sculpture, and from a paint tube belonging to the atelier of Edvard Munch, used in the last period of his life (1916-1944), were characterized.


Journal of the American Society for Mass Spectrometry | 2016

A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Method for the Identification of Anthraquinones: the Case of Historical Lakes

Francesca Sabatini; Anna Lluveras-Tenorio; Ilaria Degano; Stepanka Kuckova; Iva Krizova; Maria Perla Colombini

AbstractThis study deals with the identification of anthraquinoid molecular markers in standard dyes, reference lakes, and paint model systems using a micro-invasive and nondestructive technique such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-ToF-MS). Red anthraquinoid lakes, such as madder lake, carmine lake, and Indian lac, have been the most widely used for painting purposes since ancient times. From an analytical point of view, identifying lakes in paint samples is challenging and developing methods that maximize the information achievable minimizing the amount of sample needed is of paramount importance. The employed method was tested on less than 0.5 mg of reference samples and required a minimal sample preparation, entailing a hydrofluoric acid extraction. The method is fast and versatile because of the possibility to re-analyze the same sample (once it has been spotted on the steel plate), testing both positive and negative modes in a few minutes. The MALDI mass spectra collected in the two analysis modes were studied and compared with LDI and simulated mass spectra in order to highlight the peculiar behavior of the anthraquinones in the MALDI process. Both ionization modes were assessed for each species. The effect of the different paint binders on dye identification was also evaluated through the analyses of paint model systems. In the end, the method was successful in detecting madder lake in archeological samples from Greek wall paintings and on an Italian funerary clay vessel, demonstrating its capabilities to identify dyes in small amount of highly degraded samples. Graphical Abstractᅟ


Heritage Science | 2018

Painting the Palace of Apries I: ancient binding media and coatings of the reliefs from the Palace of Apries, Lower Egypt

Cecilie Brøns; Kaare Lund Rasmussen; Marta Melchiorre Di Crescenzo; Rebecca J. Stacey; Anna Lluveras-Tenorio

This study gives an account of the organic components (binders and coatings) found in the polychromy of some fragmented architectural reliefs from the Palace of Apries in Memphis, Egypt (26th Dynasty, ca. 589-568 BCE). A column capital and five relief fragments from the collections of the Ny Carlsberg Glyptotek in Copenhagen were chosen for examination, selected because of their well-preserved polychromy. Samples from the fragments were first investigated using Fourier transform infrared (FTIR) spectroscopy to screen for the presence of organic materials and to identify the chemical family to which these materials belong (proteinaceous, polysaccharides or lipid). Only the samples showing the potential presence of organic binder residues were further investigated using gas chromatography with mass spectrometry detection (GC–MS) targeting the analysis towards the detection and identification of compounds belonging to the chemical families identified by FTIR. The detection of polysaccharides in the paint layers on the capital and on two of the fragments indicates the use of plant gums as binding media. The interpretation of the sugar profiles was not straightforward so botanical classification was only possible for one fragment where the results of analysis seem to point to gum arabic. The sample from the same fragment was found to contain animal glue and a second protein material (possibly egg). While the presence of animal glue is probably ascribable to the binder used for the ground layer, the second protein indicates that either the paint layer was bound in a mixture of different binding materials or that the paint layer, bound in a plant gum, was then coated with a proteinaceous material. The surface of two of the investigated samples was partially covered by translucent waxy materials that were identified as a synthetic wax (applied during old conservation treatments) and as beeswax, respectively. It is possible that the beeswax is of ancient origin, selectively applied on yellow areas in order to create a certain glossiness or highlight specific elements.


Journal of Raman Spectroscopy | 2012

Micro‐Raman and GC/MS analysis to characterize the wall painting technique of Dicho Zograph in churches from Republic of Macedonia

Lidija Robeva Čukovska; Biljana Minčeva – Šukarova; Anna Lluveras-Tenorio; Alessia Andreotti; Maria Perla Colombini; Irena Nastova


Microchemical Journal | 2012

An analytical approach based on X-ray diffraction, Fourier transform infrared spectroscopy and gas chromatography/mass spectrometry to characterize Egyptian embalming materials

Jeannette Jacqueline Łucejko; Anna Lluveras-Tenorio; Francesca Modugno; Erika Ribechini; Maria Perla Colombini


Journal of Cultural Heritage | 2014

Characterization of the organic materials used in the painting of the vaulted ceiling at the Saadian Tomb of Mulay Ahmed Al-Mansour (Marrakech)

Alessia Andreotti; Ilaria Bonaduce; Valter Castelvetro; Maria Perla Colombini; Anna Lluveras-Tenorio; Mustapha Raihane; Mounsif Ibnoussina

Collaboration


Dive into the Anna Lluveras-Tenorio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leila Birolo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Joy Mazurek

Getty Conservation Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaare Lund Rasmussen

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge