Anna Lokshin
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Lokshin.
PLOS ONE | 2008
Vera Levina; Adele Marrangoni; Richard DeMarco; Elieser Gorelik; Anna Lokshin
Background Cancer stem cells (CSCs) are thought to be responsible for tumor regeneration after chemotherapy, although direct confirmation of this remains forthcoming. We therefore investigated whether drug treatment could enrich and maintain CSCs and whether the high tumorogenic and metastatic abilities of CSCs were based on their marked ability to produce growth and angiogenic factors and express their cognate receptors to stimulate tumor cell proliferation and stroma formation. Methodology/Findings Treatment of lung tumor cells with doxorubicin, cisplatin, or etoposide resulted in the selection of drug surviving cells (DSCs). These cells expressed CD133, CD117, SSEA-3, TRA1-81, Oct-4, and nuclear β-catenin and lost expression of the differentiation markers cytokeratins 8/18 (CK 8/18). DSCs were able to grow as tumor spheres, maintain self-renewal capacity, and differentiate. Differentiated progenitors lost expression of CD133, gained CK 8/18 and acquired drug sensitivity. In the presence of drugs, differentiation of DSCs was abrogated allowing propagation of cells with CSC-like characteristics. Lung DSCs demonstrated high tumorogenic and metastatic potential following inoculation into SCID mice, which supported their classification as CSCs. Luminex analysis of human and murine cytokines in sonicated lysates of parental- and CSC-derived tumors revealed that CSC-derived tumors contained two- to three-fold higher levels of human angiogenic and growth factors (VEGF, bFGF, IL-6, IL-8, HGF, PDGF-BB, G-CSF, and SCGF-β). CSCs also showed elevated levels of expression of human VEGFR2, FGFR2, CXCR1, 2 and 4 receptors. Moreover, human CSCs growing in SCID mice stimulated murine stroma to produce elevated levels of angiogenic and growth factors. Conclusions/Significance These findings suggest that chemotherapy can lead to propagation of CSCs and prevention of their differentiation. The high tumorigenic and metastatic potentials of CSCs are associated with efficient cytokine network production that may represent a target for increased efficacy of cancer therapy.
PLOS Medicine | 2008
Ivan O. Rosas; Thomas J. Richards; Kazuhisa Konishi; Yingze Zhang; Kevin J.C. Gibson; Anna Lokshin; Kathleen O. Lindell; Jose Cisneros; Sandra D. MacDonald; Annie Pardo; Frank C. Sciurba; James H. Dauber; Moisés Selman; Bernadette R. Gochuico; Naftali Kaminski
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic lung disease associated with substantial morbidity and mortality. The objective of this study was to determine whether there is a peripheral blood protein signature in IPF and whether components of this signature may serve as biomarkers for disease presence and progression. Methods and Findings We analyzed the concentrations of 49 proteins in the plasma of 74 patients with IPF and in the plasma of 53 control individuals. We identified a combinatorial signature of five proteins—MMP7, MMP1, MMP8, IGFBP1, and TNFRSF1A—that was sufficient to distinguish patients from controls with a sensitivity of 98.6% (95% confidence interval [CI] 92.7%–100%) and specificity of 98.1% (95% CI 89.9%–100%). Increases in MMP1 and MMP7 were also observed in lung tissue and bronchoalveolar lavage fluid obtained from IPF patients. MMP7 and MMP1 plasma concentrations were not increased in patients with chronic obstructive pulmonary disease or sarcoidosis and distinguished IPF compared to subacute/chronic hypersensitivity pneumonitis, a disease that may mimic IPF, with a sensitivity of 96.3% (95% CI 81.0%–100%) and specificity of 87.2% (95% CI 72.6%–95.7%). We verified our results in an independent validation cohort composed of patients with IPF, familial pulmonary fibrosis, subclinical interstitial lung disease (ILD), as well as with control individuals. MMP7 and MMP1 concentrations were significantly higher in IPF patients compared to controls in this cohort. Furthermore, MMP7 concentrations were elevated in patients with subclinical ILD and negatively correlated with percent predicted forced vital capacity (FVC%) and percent predicted carbon monoxide diffusing capacity (DLCO%). Conclusions Our experiments provide the first evidence for a peripheral blood protein signature in IPF to our knowledge. The two main components of this signature, MMP7 and MMP1, are overexpressed in the lung microenvironment and distinguish IPF from other chronic lung diseases. Additionally, increased MMP7 concentration may be indicative of asymptomatic ILD and reflect disease progression.
Cancer Epidemiology, Biomarkers & Prevention | 2005
Elieser Gorelik; Douglas Landsittel; Adele Marrangoni; Francesmary Modugno; Lyudmila Velikokhatnaya; Matthew Winans; William L. Bigbee; Ronald B. Herberman; Anna Lokshin
Early detection of ovarian cancer might improve clinical outcome. Some studies have shown the role of cytokines as a new group of tumor markers for ovarian cancer. We hypothesized that a panel comprised of multiple cytokines, which individually may not show strong correlation with the disease, might provide higher diagnostic power. To evaluate the diagnostic utility of cytokine panel, we used a novel multianalyte LabMAP profiling technology that allows simultaneous measurement of multiple markers. Concentrations of 24 cytokines (cytokines/chemokines, growth, and angiogenic factors) in combination with cancer antigen-125 (CA-125), were measured in sera of 44 patients with early-stage ovarian cancer, 45 healthy women, and 37 patients with benign pelvic tumors. Six markers, i.e., interleukin (IL)-6, IL-8, epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), monocyte chemoattractant protein-1 (MCP-1), and CA-125, showed significant differences in serum concentrations between ovarian cancer and control groups. Out of this group, IL-6, IL-8, VEGF, EGF, and CA-125, were used in a classification tree analysis that resulted in 84% sensitivity at 95% specificity. The receiver operator characteristic curve created using the combination of markers produced sensitivities between 90% and 100% in the area of 80% to 90% specificity, whereas the receiver operator characteristic curve for CA-125 alone resulted in sensitivities of 70% to 80%. The classification tree analysis for discrimination of benign condition from ovarian cancer used CA-125, granulocyte colony-stimulating factor (G-CSF), IL-6, EGF, and VEGF resulting in 86.5% sensitivity and 93.0% specificity. The presented data show that simultaneous testing of a panel of serum cytokines and CA-125 using LabMAP technology may present a promising approach for ovarian cancer detection.
Journal of Clinical Oncology | 2010
Zoya Yurkovetsky; Steven J. Skates; Aleksey Lomakin; Brian M. Nolen; Trenton Pulsipher; Francesmary Modugno; Jeffrey R. Marks; Andrew K. Godwin; Elieser Gorelik; Ian Jacobs; Usha Menon; Karen H. Lu; Donna Badgwell; Robert C. Bast; Anna Lokshin
PURPOSE Early detection of ovarian cancer has great promise to improve clinical outcome. PATIENTS AND METHODS Ninety-six serum biomarkers were analyzed in sera from healthy women and from patients with ovarian cancer, benign pelvic tumors, and breast, colorectal, and lung cancers, using multiplex xMAP bead-based immunoassays. A Metropolis algorithm with Monte Carlo simulation (MMC) was used for analysis of the data. RESULTS A training set, including sera from 139 patients with early-stage ovarian cancer, 149 patients with late-stage ovarian cancer, and 1,102 healthy women, was analyzed with MMC algorithm and cross validation to identify an optimal biomarker panel discriminating early-stage cancer from healthy controls. The four-biomarker panel providing the highest diagnostic power of 86% sensitivity (SN) for early-stage and 93% SN for late-stage ovarian cancer at 98% specificity (SP) was comprised of CA-125, HE4, CEA, and VCAM-1. This model was applied to an independent blinded validation set consisting of sera from 44 patients with early-stage ovarian cancer, 124 patients with late-stage ovarian cancer, and 929 healthy women, providing unbiased estimates of 86% SN for stage I and II and 95% SN for stage III and IV disease at 98% SP. This panel was selective for ovarian cancer showing SN of 33% for benign pelvic disease, SN of 6% for breast cancer, SN of 0% for colorectal cancer, and SN of 36% for lung cancer. CONCLUSION A panel of CA-125, HE4, CEA, and VCAM-1, after additional validation, could serve as an initial stage in a screening strategy for epithelial ovarian cancer.
Cancer Prevention Research | 2011
Daniel W. Cramer; Robert C. Bast; Christine D. Berg; Eleftherios P. Diamandis; Andrew K. Godwin; Patricia Hartge; Anna Lokshin; Karen H. Lu; Martin W. McIntosh; Gil Mor; Christos Patriotis; Paul F. Pinsky; Mark Thornquist; Nathalie Scholler; Steven J. Skates; Patrick M. Sluss; Sudhir Srivastava; David C. Ward; Zhen Zhang; Claire Zhu; Nicole Urban
Establishing a cancer screening biomarkers intended performance requires “phase III” specimens obtained in asymptomatic individuals before clinical diagnosis rather than “phase II” specimens obtained from symptomatic individuals at diagnosis. We used specimens from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial to evaluate ovarian cancer biomarkers previously assessed in phase II sets. Phase II specimens from 180 ovarian cancer cases and 660 benign disease or general population controls were assembled from four Early Detection Research Network or Ovarian Cancer Specialized Program of Research Excellence sites and used to rank 49 biomarkers. Thirty-five markers, including 6 additional markers from a fifth site, were then evaluated in PLCO proximate specimens from 118 women with ovarian cancer and 474 matched controls. Top markers in phase II specimens included CA125, HE4, transthyretin, CA15.3, and CA72.4 with sensitivity at 95% specificity ranging from 0.73 to 0.40. Except for transthyretin, these markers had similar or better sensitivity when moving to phase III specimens that had been drawn within 6 months of the clinical diagnosis. Performance of all markers declined in phase III specimens more remote than 6 months from diagnosis. Despite many promising new markers for ovarian cancer, CA125 remains the single-best biomarker in the phase II and phase III specimens tested in this study. Cancer Prev Res; 4(3); 365–74. ©2011 AACR.
Clinical Cancer Research | 2007
Zoya Yurkovetsky; John M. Kirkwood; Howard D. Edington; Adele Marrangoni; Lyudmila Velikokhatnaya; Matthew Winans; Elieser Gorelik; Anna Lokshin
Purpose: Interferon (IFN)-α2b is the only Food and Drug Administration–approved treatment for operable high-risk melanoma that has been shown to significantly and durably prolong relapse-free survival (RFS) of patients with stage IIB-III melanoma. Development of reliable serum assays may contribute to the development of methods for earlier detection of melanoma and the selection of patients who may be most susceptible to current available interventions with IFNα. Experimental Design: A powerful high-throughput xMAP multiplex immunobead assay technology (Luminex Corp., Austin, TX) was used to simultaneously test 29 cytokines, chemokines, angiogenic as well as growth factors, and soluble receptors in the sera of 179 patients with high-risk melanoma and 378 healthy individuals. Results: Serum concentrations of interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-12p40, IL-13, granulocyte colony-stimulating factor, monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein (MIP)-1α, MIP-1β, IFNα, tumor necrosis factor (TNF)-α, epidermal growth factor, vascular endothelial growth factor (VEGF), and TNF receptor II were found to be significantly higher in patients with resected high-risk melanoma compared with healthy controls. Bayesian Network algorithm classification of the data offered 90% sensitivity at 98% specificity with 96.5% of melanoma patients distinguished from healthy individuals. IFN-α2b therapy resulted in a significant decrease of serum levels of immunosuppressive and tumor angiogenic/growth stimulatory factors (VEGF, epidermal growth factor, and hepatocyte growth factor) and increased levels of antiangiogenic IFN-γ inducible protein 10 (IP-10) and IFN-α. Pretreatment levels of proinflammatory cytokines IL-1β, IL-1α, IL-6, TNF-α, and chemokines MIP-1α and MIP-1β were found to be significantly higher in the serum of patients with longer RFS values of 1 to 5 and >5 years when compared with patients with shorter RFS of <1 year. Conclusion: These data show that multiplexed analysis of serum biomarkers is useful for the evaluation of prognostic markers of clinical outcome and potential predictive markers of response to IFN-α2b in patients with high-risk operable melanoma.
Journal of Immunology | 2005
Galina V. Shurin; Robert L. Ferris; Irina L. Tourkova; Lori Perez; Anna Lokshin; Levent Balkir; Bobby Collins; Gurkamal S. Chatta; Michael R. Shurin
Breast and kidney-expressed chemokine (BRAK) CXCL14 is a new CXC chemokine with unknown function and receptor selectivity. The majority of head and neck squamous cell carcinoma (HNSCC) and some cervical squamous cell carcinoma do not express CXCL14 mRNA, as opposed to constitutive expression by normal oral squamous epithelium. In this study, we demonstrate that the loss of CXCL14 in HNSCC cells and at HNSCC primary tumor sites was correlated with low or no attraction of dendritic cell (DC) in vitro, and decreased infiltration of HNSCC mass by DC at the tumor site in vivo. Next, we found that recombinant human CXCL14 and CXCL14-positive HNSCC cell lines induced DC attraction in vitro, whereas CXCL14-negative HNSCC cells did not chemoattract DC. Transduction of CXCL14-negative HNSCC cell lines with the human CXCL14 gene resulted in stimulation of DC attraction in vitro and increased tumor infiltration by DC in vivo in chimeric animal models. Furthermore, evaluating the biologic effect of CXCL14 on DC, we demonstrated that the addition of recombinant human CXCL14 to DC cultures resulted in up-regulation of the expression of DC maturation markers, as well as enhanced proliferation of allogeneic T cells in MLR. Activation of DC with recombinant human CXCL14 was accompanied by up-regulation of NF-κB activity. These data suggest that CXCL14 is a potent chemoattractant and activator of DC and might be involved in DC homing in vivo.
Cancer Prevention Research | 2011
Claire Zhu; Paul F. Pinsky; Daniel W. Cramer; David F. Ransohoff; Patricia Hartge; Ruth M. Pfeiffer; Nicole Urban; Gil Mor; Robert C. Bast; Lee E. Moore; Anna Lokshin; Martin W. McIntosh; Steven J. Skates; Allison F. Vitonis; Zhen Zhang; David C. Ward; James Symanowski; Aleksey Lomakin; Eric T. Fung; Patrick M. Sluss; Nathalie Scholler; Karen H. Lu; Adele Marrangoni; Christos Patriotis; Sudhir Srivastava; Saundra S. Buys; Christine D. Berg
A panel of biomarkers may improve predictive performance over individual markers. Although many biomarker panels have been described for ovarian cancer, few studies used prediagnostic samples to assess the potential of the panels for early detection. We conducted a multisite systematic evaluation of biomarker panels using prediagnostic serum samples from the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) screening trial. Using a nested case–control design, levels of 28 biomarkers were measured laboratory-blinded in 118 serum samples obtained before cancer diagnosis and 951 serum samples from matched controls. Five predictive models, each containing 6 to 8 biomarkers, were evaluated according to a predetermined analysis plan. Three sequential analyses were conducted: blinded validation of previously established models (step 1); simultaneous split-sample discovery and validation of models (step 2); and exploratory discovery of new models (step 3). Sensitivity, specificity, sensitivity at 98% specificity, and AUC were computed for the models and CA125 alone among 67 cases diagnosed within one year of blood draw and 476 matched controls. In step 1, one model showed comparable performance to CA125, with sensitivity, specificity, and AUC at 69.2%, 96.6%, and 0.892, respectively. Remaining models had poorer performance than CA125 alone. In step 2, we observed a similar pattern. In step 3, a model derived from all 28 markers failed to show improvement over CA125. Thus, biomarker panels discovered in diagnostic samples may not validate in prediagnostic samples; utilizing prediagnostic samples for discovery may be helpful in developing validated early detection panels. Cancer Prev Res; 4(3); 375–83. ©2011 AACR.
Clinical Cancer Research | 2009
Jeong Won Lee; Mian M.K. Shahzad; Yvonne G. Lin; Guillermo N. Armaiz-Pena; Lingegowda S. Mangala; Hee Dong Han; Hye Sun Kim; Eun Ji Nam; Nicholas B. Jennings; Jyotsnabaran Halder; Alpa M. Nick; Rebecca L. Stone; Chunhua Lu; Susan K. Lutgendorf; Steve W. Cole; Anna Lokshin; Anil K. Sood
Purpose: Surgical stress has been suggested to facilitate the growth of preexisting micrometastases as well as small residual tumor postoperatively. The purpose of this study was to examine the effects of surgical stress on ovarian cancer growth and to determine underlying mechanisms responsible for increased growth. Experimental Design: To mimic the effects of surgery, we did a laparotomy or mastectomy under isoflurane inhalation on athymic nude mice 4 days after i.p. tumor cell injection. Propranolol infusion via Alzet pumps was used to block the influence of sympathetic nervous system activation by surgical stress. Results: In both HeyA8 and SKOV3ip1 models, the mice in the laparotomy and mastectomy groups had significantly greater tumor weight (P < 0.05) and nodules (P < 0.05) compared with anesthesia only controls. There was no increase in tumor weight following surgery in the β-adrenergic receptor–negative RMG-II model. Propranolol completely blocked the effects of surgical stress on tumor growth, indicating a critical role for β-adrenergic receptor signaling in mediating the effects of surgical stress on tumor growth. In the HeyA8 and SKOV3ip1 models, surgery significantly increased microvessel density (CD31) and vascular endothelial growth factor expression, which were blocked by propranolol treatment. Conclusion: These results indicate that surgical stress could enhance tumor growth and angiogenesis, and β-blockade might be effective in preventing such effects.
Cancer and Metastasis Reviews | 2006
Michael R. Shurin; Galina V. Shurin; Anna Lokshin; Zoya Yurkovetsky; Dmitry W. Gutkin; Gurkamal S. Chatta; Hua Zhong; Baohui Han; Robert L. Ferris
The tumor microenvironment consists of a variable combination of tumor cells, stromal fibroblasts, endothelial cells and infiltrating leukocytes, such as macrophages, T lymphocytes, and dendritic cells. A variety of cytokines, chemokines and growth factors are produced in the local tumor environment by different cells accounting for a complex cell interaction and regulation of differentiation, activation, function and survival of multiple cell types. The interaction between cytokines, chemokines, growth factors and their receptors forms a comprehensive network at the tumor site, which is primary responsible for overall tumor progression and spreading or induction of antitumor immune responses and tumor rejection. Although the general thought is that dendritic cells are among the first cells migrating to the tumor site and recognizing tumor cells for the induction of specific antitumor immunity, the clinical relevance of dendritic cells at the site of the tumor remains a matter of debate regarding their role in the generation of successful antitumor immune responses in human cancers. While several lines of evidence suggest that intratumoral dendritic cells play an important role in antitumor immune responses, understanding the mechanisms of dendritic cell/tumor cell interaction and modulation of activity and function of different dendritic cell subtypes at the tumor site is incomplete. This review is limited to discussing the role of intratumoral cytokine network in the understanding immunobiology of tumor-associated dendritic cells, which seems to possess different regulatory functions at the tumor site.