Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Lytovchenko is active.

Publication


Featured researches published by Anna Lytovchenko.


Plant Physiology | 2003

Metabolic Profiling of Transgenic Tomato Plants Overexpressing Hexokinase Reveals That the Influence of Hexose Phosphorylation Diminishes during Fruit Development

Ute Roessner-Tunali; Björn Hegemann; Anna Lytovchenko; Fernando Carrari; Claudia Bruedigam; David Granot; Alisdair R. Fernie

We have conducted a comprehensive metabolic profiling on tomato (Lycopersicon esculentum) leaf and developing fruit tissue using a recently established gas chromatography-mass spectrometry profiling protocol alongside conventional spectrophotometric and liquid chromatographic methodologies. Applying a combination of these techniques, we were able to identify in excess of 70 small-Mr metabolites and to catalogue the metabolite composition of developing tomato fruit. In addition to comparing differences in metabolite content between source and sink tissues of the tomato plant and after the change in metabolite pool sizes through fruit development, we have assessed the influence of hexose phosphorylation through fruit development by analyzing transgenic plants constitutively overexpressing Arabidopsis hexokinase AtHXK1. Analysis of the total hexokinase activity in developing fruits revealed that both wild-type and transgenic fruits exhibit decreasing hexokinase activity with development but that the relative activity of the transgenic lines with respect to wild type increases with development. Conversely, both point-by-point and principal component analyses suggest that the metabolic phenotype of these lines becomes less distinct from wild type during development. In summary, the data presented in this paper demonstrate that the influence of hexose phosphorylation diminishes during fruit development and highlights the importance of greater temporal resolution of metabolism.


Plant Physiology | 2005

Enhanced Photosynthetic Performance and Growth as a Consequence of Decreasing Mitochondrial Malate Dehydrogenase Activity in Transgenic Tomato Plants

Adriano Nunes-Nesi; Fernando Carrari; Anna Lytovchenko; Anna Smith; Marcelo Ehlers Loureiro; R. George Ratcliffe; Lee J. Sweetlove; Alisdair R. Fernie

Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the mitochondrial malate dehydrogenase gene in the antisense orientation and exhibiting reduced activity of this isoform of malate dehydrogenase show enhanced photosynthetic activity and aerial growth under atmospheric conditions (360 ppm CO2). In comparison to wild-type plants, carbon dioxide assimilation rates and total plant dry matter were up to 11% and 19% enhanced in the transgenics, when assessed on a whole-plant basis. Accumulation of carbohydrates and redox-related compounds such as ascorbate was also markedly elevated in the transgenics. Also increased in the transgenic plants was the capacity to use l-galactono-lactone, the terminal precursor of ascorbate biosynthesis, as a respiratory substrate. Experiments in which ascorbate was fed to isolated leaf discs also resulted in increased rates of photosynthesis providing strong indication for an ascorbate-mediated link between the energy-generating processes of respiration and photosynthesis. This report thus shows that the repression of this mitochondrially localized enzyme improves both carbon assimilation and aerial growth in a crop species.


Plant Physiology | 2007

A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity

Montserrat Saladié; Antonio J. Matas; Tal Isaacson; Matthew A. Jenks; S. Mark Goodwin; Karl J. Niklas; Ren Xiaolin; John M. Labavitch; Kenneth A. Shackel; Alisdair R. Fernie; Anna Lytovchenko; Malcolm A. O'Neill; Christopher B. Watkins; Jocelyn K. C. Rose

The softening of fleshy fruits, such as tomato (Solanum lycopersicum), during ripening is generally reported to result principally from disassembly of the primary cell wall and middle lamella. However, unsuccessful attempts to prolong fruit firmness by suppressing the expression of a range of wall-modifying proteins in transgenic tomato fruits do not support such a simple model. ‘Delayed Fruit Deterioration’ (DFD) is a previously unreported tomato cultivar that provides a unique opportunity to assess the contribution of wall metabolism to fruit firmness, since DFD fruits exhibit minimal softening but undergo otherwise normal ripening, unlike all known nonsoftening tomato mutants reported to date. Wall disassembly, reduced intercellular adhesion, and the expression of genes associated with wall degradation were similar in DFD fruit and those of the normally softening ‘Ailsa Craig’. However, ripening DFD fruit showed minimal transpirational water loss and substantially elevated cellular turgor. This allowed an evaluation of the relative contribution and timing of wall disassembly and water loss to fruit softening, which suggested that both processes have a critical influence. Biochemical and biomechanical analyses identified several unusual features of DFD cuticles and the data indicate that, as with wall metabolism, changes in cuticle composition and architecture are an integral and regulated part of the ripening program. A model is proposed in which the cuticle affects the softening of intact tomato fruit both directly, by providing a physical support, and indirectly, by regulating water status.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Mitochondrial uncoupling protein is required for efficient photosynthesis

Lee J. Sweetlove; Anna Lytovchenko; Megan Morgan; Adriano Nunes-Nesi; Nicolas L. Taylor; Charles Baxter; Ira Eickmeier; Alisdair R. Fernie

Uncoupling proteins (UCPs) occur in the inner mitochondrial membrane and dissipate the proton gradient across this membrane that is normally used for ATP synthesis. Although the catalytic function and regulation of plant UCPs have been described, the physiological purpose of UCP in plants has not been established. Here, biochemical and physiological analyses of an insertional knockout of one of the Arabidopsis UCP genes (AtUCP1) are presented that resolve this issue. Absence of UCP1 results in localized oxidative stress but does not impair the ability of the plant to withstand a wide range of abiotic stresses. However, absence of UCP1 results in a photosynthetic phenotype. Specifically there is a restriction in photorespiration with a decrease in the rate of oxidation of photorespiratory glycine in the mitochondrion. This change leads to an associated reduced photosynthetic carbon assimilation rate. Collectively, these results suggest that the main physiological role of UCP1 in Arabidopsis leaves is related to maintaining the redox poise of the mitochondrial electron transport chain to facilitate photosynthetic metabolism.


Plant Physiology | 2003

Reduced Expression of Aconitase Results in an Enhanced Rate of Photosynthesis and Marked Shifts in Carbon Partitioning in Illuminated Leaves of Wild Species Tomato

Fernando Carrari; Adriano Nunes-Nesi; Yves Gibon; Anna Lytovchenko; Marcelo Ehlers Loureiro; Alisdair R. Fernie

Wild species tomato (Lycopersicon pennellii) plants bearing a genetic lesion in the gene encoding aconitase (Aco-1; aconitate hydratase EC 4.2.1.3) were characterized at molecular and biochemical levels. The genetic basis of this lesion was revealed by cloning the wild-type and mutant alleles. The mutation resulted in lowered expression of the Aco-1 transcript and lowered levels of both cytosolic and mitochondrial aconitase protein and activity. After in silico analysis, we concluded that in the absence of a recognizable target sequence, the best explanation for the dual location of this protein is inefficient targeting. Biochemical analysis of leaves of the Aco-1 accession suggested that they exhibited a restricted flux through the Krebs cycle and reduced levels of Krebs cycle intermediates but were characterized by elevated adenylate levels and an enhanced rate of CO2 assimilation. Furthermore, the analysis of both steady-state metabolite levels and metabolic fluxes revealed that this accession also exhibited elevated rates of photosynthetic Suc synthesis and a corresponding increase in fruit yield. Therefore, we conclude that the Krebs cycle normally competes with the Suc synthetic pathway for carbon but is not essential for the supply of energy to fuel the operation of this pathway.


Plant Journal | 2009

SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato

Jonathan T. Vogel; Michael Walter; Patrick Giavalisco; Anna Lytovchenko; Wouter Kohlen; Tatsiana Charnikhova; Andrew J. Simkin; Charles Goulet; Dieter Strack; Harro J. Bouwmeester; Alisdair R. Fernie; Harry J. Klee

The regulation of shoot branching is an essential determinant of plant architecture, integrating multiple external and internal signals. One of the signaling pathways regulating branching involves the MAX (more axillary branches) genes. Two of the genes within this pathway, MAX3/CCD7 and MAX4/CCD8, encode carotenoid cleavage enzymes involved in generating a branch-inhibiting hormone, recently identified as strigolactone. Here, we report the cloning of SlCCD7 from tomato. As in other species, SlCCD7 encodes an enzyme capable of cleaving cyclic and acyclic carotenoids. However, the SlCCD7 protein has 30 additional amino acids of unknown function at its C terminus. Tomato plants expressing a SlCCD7 antisense construct display greatly increased branching. To reveal the underlying changes of this strong physiological phenotype, a metabolomic screen was conducted. With the exception of a reduction of stem amino acid content in the transgenic lines, no major changes were observed. In contrast, targeted analysis of the same plants revealed significantly decreased levels of strigolactone. There were no significant changes in root carotenoids, indicating that relatively little substrate is required to produce the bioactive strigolactones. The germination rate of Orobanche ramosa seeds was reduced by up to 90% on application of extract from the SlCCD7 antisense lines, compared with the wild type. Additionally, upon mycorrhizal colonization, C(13) cyclohexenone and C(14) mycorradicin apocarotenoid levels were greatly reduced in the roots of the antisense lines, implicating SlCCD7 in their biosynthesis. This work demonstrates the diverse roles of MAX3/CCD7 in strigolactone production, shoot branching, source-sink interactions and production of arbuscular mycorrhiza-induced apocarotenoids.


Planta | 2003

Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology

Georg Leggewie; Anna Kolbe; Rémi Lemoine; Ute Roessner; Anna Lytovchenko; Ellen Zuther; Julia Kehr; Wolf B. Frommer; Jörg W. Riesmeier; Lothar Willmitzer; Alisdair R. Fernie

The aim of this work was to examine the consequences of the heterologous expression of a spinach (Spinacia oleracea L.) sucrose transporter (SoSUT1) in potato (Solanum tuberosum L.). Many studies have indicated that reduction of the expression of this class of sucrose transporter has deleterious effects on plant growth and development; however, until now the possibility of improving plant performance by enhancing the expression of this sucrose transporter has not been reported. With this intention we constructed a chimeric construct in which SoSUT1 was cloned in-frame with the myc epitope. We confirmed that this construct, SoSUT1m, was able to mediate sucrose transport by expression in the yeast strain SUSY7. SoSUT1m was expressed in wild-type potato in the sense orientation under the control of the cauliflower mosaic virus 35S promoter to evaluate the effect of an increased constitutive expression of a class-I sucrose transporter. We confirmed that these plants displayed expression of SoSUT1 at both the transcript and protein level and that microsomal fragments isolated from selected lines had an increased sucrose uptake capacity. Analysis of metabolism of these lines indicated that the leaves were characterised by a reduced sucrose level yet exhibited little change in photosynthetic rate. Furthermore, despite the observed increase in sugar (and reduction in amino acid) levels within the tubers, there was little change in either starch content or tuber yield in the transformants. In summary, the genetic manipulation described in this paper resulted in a shift in carbon partitioning in both leaves and tubers and an increased sucrose uptake rate in plasma-membrane vesicles isolated from these lines, but had little impact on tuber metabolism or morphology.


Plant Physiology | 2011

Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development

Anna Lytovchenko; Ira Eickmeier; Clara Pons; Sonia Osorio; Marek Szecowka; Kerstin Lehmberg; Stéphanie Arrivault; Takayuki Tohge; Benito Pineda; María Teresa Antón; Boris Hedtke; Yinghong Lu; Joachim Fisahn; Ralph Bock; Mark Stitt; Bernhard Grimm; Antonio Granell; Alisdair R. Fernie

Fruit of tomato (Solanum lycopersicum), like those from many species, have been characterized to undergo a shift from partially photosynthetic to truly heterotrophic metabolism. While there is plentiful evidence for functional photosynthesis in young tomato fruit, the rates of carbon assimilation rarely exceed those of carbon dioxide release, raising the question of its role in this tissue. Here, we describe the generation and characterization of lines exhibiting a fruit-specific reduction in the expression of glutamate 1-semialdehyde aminotransferase (GSA). Despite the fact that these plants contained less GSA protein and lowered chlorophyll levels and photosynthetic activity, they were characterized by few other differences. Indeed, they displayed almost no differences in fruit size, weight, or ripening capacity and furthermore displayed few alterations in other primary or intermediary metabolites. Although GSA antisense lines were characterized by significant alterations in the expression of genes associated with photosynthesis, as well as with cell wall and amino acid metabolism, these changes were not manifested at the phenotypic level. One striking feature of the antisense plants was their seed phenotype: the transformants displayed a reduced seed set and altered morphology and metabolism at early stages of fruit development, although these differences did not affect the final seed number or fecundity. Taken together, these results suggest that fruit photosynthesis is, at least under ambient conditions, not necessary for fruit energy metabolism or development but is essential for properly timed seed development and therefore may confer an advantage under conditions of stress.


Plant Physiology | 2008

Decreased Expression of Cytosolic Pyruvate Kinase in Potato Tubers Leads to a Decline in Pyruvate Resulting in an in Vivo Repression of the Alternative Oxidase

Sandra N. Oliver; John E. Lunn; Ewa Urbanczyk-Wochniak; Anna Lytovchenko; Joost T. van Dongen; Benjamin Faix; Elmar Schmälzlin; Alisdair R. Fernie; Peter Geigenberger

The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo.


The Plant Cell | 2006

Analysis of the Arabidopsis rsr4-1/pdx1-3 mutant reveals the critical function of the PDX1 protein family in metabolism, development, and vitamin B6 biosynthesis

Susan Wagner; Anne Bernhardt; Jan Erik Leuendorf; Christel Drewke; Anna Lytovchenko; Nader Mujahed; Cristian Gurgui; Wolf B. Frommer; Eckhard Leistner; Alisdair R. Fernie; Hanjo Hellmann

Vitamin B6 represents a highly important group of compounds ubiquitous in all living organisms. It has been demonstrated to alleviate oxidative stress and in its phosphorylated form participates as a cofactor in >100 biochemical reactions. By means of a genetic approach, we have identified a novel mutant, rsr4-1 (for reduced sugar response), with aberrant root and leaf growth that requires supplementation of vitamin B6 for normal development. Cloning of the mutated gene revealed that rsr4-1 carries a point mutation in a member of the PDX1/SOR1/SNZ (for Pyridoxine biosynthesis protein 1/Singlet oxygen resistant 1/Snooze) family that leads to reduced vitamin B6 content. Consequently, metabolism is broadly altered, mainly affecting amino acid, raffinose, and shikimate contents and trichloroacetic acid cycle constituents. Yeast two-hybrid and pull-down analyses showed that Arabidopsis thaliana PDX1 proteins can form oligomers. Interestingly, the mutant form of PDX1 has severely reduced capability to oligomerize, potentially suggesting that oligomerization is important for function. In summary, our results demonstrate the critical function of the PDX1 protein family for metabolism, whole-plant development, and vitamin B6 biosynthesis in higher plants.

Collaboration


Dive into the Anna Lytovchenko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriano Nunes-Nesi

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Sonnewald

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Yves Gibon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Ute Roessner

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge