Anna M. K. Gustafsson
Chalmers University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna M. K. Gustafsson.
Separation Science and Technology | 2015
Anna M. K. Gustafsson; Britt-Marie Steenari; Christian Ekberg
CIGS (copper indium gallium diselenide) is a semiconductor used in high efficiency thin film solar cells. Several of these elements are considered to be fairly rare and thus expensive. In order to ensure future supply of the metals, an efficient recycling process for CIGS is needed. We have previously published a process for the separation of high purity selenium from CIGS solar cell waste materials. In the present paper we evaluate the possibility of using high-temperature chlorination to separate copper, indium, and gallium from the residue obtained in the selenium separation process. The chlorination agents used were chlorine gas, hydrogen chloride gas, and ammonium chloride. The goal was to use different temperatures to separate the metal chlorides formed. Ammonium chloride was shown to be the most promising chlorination agent for future process optimization.
Waste Management | 2014
Anna M. K. Gustafsson; Mark Foreman; Christian Ekberg
Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition to the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1h at 800°C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.
The Scientific World Journal | 2015
Toni Gutknecht; Anna M. K. Gustafsson; Christer Forsgren; Christian Ekberg; Britt-Marie Steenari
Metal oxide varistors (MOVs) are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching) process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production.
The Scientific World Journal | 2015
Anna M. K. Gustafsson; Fredrik Björefors; Britt-Marie Steenari; Christian Ekberg
Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective.
Environmental Technology | 2018
Rikard Ylmén; Anna M. K. Gustafsson; Caterina Camerani-Pinzani; Britt-Marie Steenari
ABSTRACT This paper describes the development of a method for recovery of phosphorous from one of the waste waters at an Akzo Nobel chemical plant in Ale close to Göteborg. It was found that it is possible to transform the phosphorous in the waste water to a saleable product, i.e. a slowly dissolving fertilizer. The developed process includes oxidation of phosphite to phosphate with hydrogen peroxide and heat. The phosphate is then precipitated as crystalline struvite (ammonium magnesium phosphate) by the addition of magnesium chloride. The environmental impacts of the new method were compared with those of the current method using life cycle assessment. It was found that the methodology developed in this project was an improvement compared with the current practice regarding element resource depletion and eutrophication. However, the effect on global warming would be greater with the new method. There could however be several ways to decrease the global warming effect. Since most of the carbon dioxide emissions come from the production of magnesium chloride from carbonates, changing to utilization of a magnesium chloride from desalination of seawater or from recycling of PVC would decrease the carbon footprint significantly.
Separation Science and Technology | 2015
Anna M. K. Gustafsson; Britt-Marie Steenari; Christian Ekberg
Recycling of copper indium gallium diselenide (CIGS) solar cell materials is important to ensure future supply of indium and gallium. Our previous work includes recycling of selenium from CIGS materials and a scoping study on high-temperature chlorination for the separation of the remaining elements using different chlorination agents. In the present work we further develop high-temperature chlorination separation using ammonium chloride. The study showed that 97 wt% of the gallium and 93 wt% of the indium could be recovered at 260 and 340°C, respectively. The process resulted in good separation between gallium and copper while the indium content in the gallium and copper fractions were above the goal of 1 wt%.
Archive | 2012
Anna M. K. Gustafsson
Archive | 2014
Anna M. K. Gustafsson
Archive | 2012
Mark Foreman; Anna M. K. Gustafsson; Christian Ekberg
Archive | 2012
Mark Foreman; Anna M. K. Gustafsson; Christian Ekberg