Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna M. Rydzik is active.

Publication


Featured researches published by Anna M. Rydzik.


Journal of Medicinal Chemistry | 2012

Plant Growth Regulator Daminozide Is a Selective Inhibitor of Human KDM2/7 Histone Demethylases

Nathan R. Rose; Esther C. Y. Woon; Anthony Tumber; Louise J. Walport; Rasheduzzaman Chowdhury; Xuan Shirley Li; Oliver N. King; Clarisse Lejeune; Stanley S. Ng; T. Krojer; Mun Chiang Chan; Anna M. Rydzik; Richard J. Hopkinson; Ka Hing Che; Michelle Daniel; C. Strain-Damerell; C. Gileadi; Grazyna Kochan; Ivanhoe K. H. Leung; J E Dunford; Kar Kheng Yeoh; Peter J. Ratcliffe; N. Burgess-Brown; Frank von Delft; Susanne Müller; Brian D. Marsden; Paul E. Brennan; Michael A. McDonough; U. Oppermann; Robert J. Klose

The JmjC oxygenases catalyze the N-demethylation of N(ε)-methyl lysine residues in histones and are current therapeutic targets. A set of human 2-oxoglutarate analogues were screened using a unified assay platform for JmjC demethylases and related oxygenases. Results led to the finding that daminozide (N-(dimethylamino)succinamic acid, 160 Da), a plant growth regulator, selectively inhibits the KDM2/7 JmjC subfamily. Kinetic and crystallographic studies reveal that daminozide chelates the active site metal via its hydrazide carbonyl and dimethylamino groups.


Chemical Science | 2013

5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation.

Richard J. Hopkinson; Anthony Tumber; Clarence Yapp; Rasheduzzaman Chowdhury; WeiShen Aik; Ka Hing Che; Xuan Shirley Li; Jan Kristensen; Oliver N. King; Mun Chiang Chan; Kar Kheng Yeoh; Hwanho Choi; Louise J. Walport; Cyrille C. Thinnes; Jacob T. Bush; Clarisse Lejeune; Anna M. Rydzik; Nathan R. Rose; Eleanor A. L. Bagg; Michael A. McDonough; T. Krojer; W.W. Yue; Stanley S. Ng; Lars Olsen; Paul E. Brennan; U. Oppermann; Susanne Müller-Knapp; Robert J. Klose; Peter J. Ratcliffe; Christopher J. Schofield

2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline (IOX1) and 4-carboxy-8-hydroxyquinoline (4C8HQ) with that of two other commonly used 2OG oxygenase inhibitors, N-oxalylglycine (NOG) and 2,4-pyridinedicarboxylic acid (2,4-PDCA). The results reveal that IOX1 has a broad spectrum of activity, as demonstrated by the inhibition of transcription factor hydroxylases, representatives of all 2OG dependent histone demethylase subfamilies, nucleic acid demethylases and γ-butyrobetaine hydroxylase. Cellular assays show that, unlike NOG and 2,4-PDCA, IOX1 is active against both cytosolic and nuclear 2OG oxygenases without ester derivatisation. Unexpectedly, crystallographic studies on these oxygenases demonstrate that IOX1, but not 4C8HQ, can cause translocation of the active site metal, revealing a rare example of protein ligand-induced metal movement.


Nature Chemistry | 2014

Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition

Jürgen Brem; Sander S. van Berkel; WeiShen Aik; Anna M. Rydzik; Matthew B. Avison; Ilaria Pettinati; Klaus-Daniel Umland; Akane Kawamura; James Spencer; Timothy D. W. Claridge; Michael A. McDonough; Christopher J. Schofield

The use of β-lactam antibiotics is compromised by resistance, which is provided by β-lactamases belonging to both metallo (MBL)- and serine (SBL)-β-lactamase subfamilies. The rhodanines are one of very few compound classes that inhibit penicillin-binding proteins (PBPs), SBLs and, as recently reported, MBLs. Here, we describe crystallographic analyses of the mechanism of inhibition of the clinically relevant VIM-2 MBL by a rhodanine, which reveal that the rhodanine ring undergoes hydrolysis to give a thioenolate. The thioenolate is found to bind via di-zinc chelation, mimicking the binding of intermediates in β-lactam hydrolysis. Crystallization of VIM-2 in the presence of the intact rhodanine led to observation of a ternary complex of MBL, a thioenolate fragment and rhodanine. The crystallographic observations are supported by kinetic and biophysical studies, including (19)F NMR analyses, which reveal the rhodanine-derived thioenolate to be a potent broad-spectrum MBL inhibitor and a lead structure for the development of new types of clinically useful MBL inhibitors.


Journal of Medicinal Chemistry | 2013

Assay Platform for Clinically Relevant Metallo-β-lactamases

Sander S. van Berkel; Jürgen Brem; Anna M. Rydzik; Ramya Salimraj; Ricky Cain; Anil Verma; Raymond J. Owens; Colin W. G. Fishwick; James Spencer; Christopher J. Schofield

Metallo-β-lactamases (MBLs) are a growing threat to the use of almost all clinically used β-lactam antibiotics. The identification of broad-spectrum MBL inhibitors is hampered by the lack of a suitable screening platform, consisting of appropriate substrates and a set of clinically relevant MBLs. We report procedures for the preparation of a set of clinically relevant metallo-β-lactamases (i.e., NDM-1 (New Delhi MBL), IMP-1 (Imipenemase), SPM-1 (São Paulo MBL), and VIM-2 (Verona integron-encoded MBL)) and the identification of suitable fluorogenic substrates (umbelliferone-derived cephalosporins). The fluorogenic substrates were compared to chromogenic substrates (CENTA, nitrocefin, and imipenem), showing improved sensitivity and kinetic parameters. The efficiency of the fluorogenic substrates was exemplified by inhibitor screening, identifying 4-chloroisoquinolinols as potential pan MBL inhibitors.


Nature Communications | 2014

Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases

Hanna Tarhonskaya; Anna M. Rydzik; Ivanhoe K. H. Leung; Nikita D. Loik; Mun Chiang Chan; Akane Kawamura; James S. O. McCullagh; Timothy D. W. Claridge; Emily Flashman; Christopher J. Schofield

Accumulation of (R)-2-hydroxyglutarate in cells results from mutations to isocitrate dehydrogenase that correlate with cancer. A recent study reports that (R)-, but not (S)-2-hydroxyglutarate, acts as a co-substrate for the hypoxia-inducible factor prolyl hydroxylases via enzyme-catalysed oxidation to 2-oxoglutarate. Here we investigate the mechanism of 2-hydroxyglutarate-enabled activation of 2-oxoglutarate oxygenases, including prolyl hydroxylase domain 2, the most important human prolyl hydroxylase isoform. We observe that 2-hydroxyglutarate-enabled catalysis by prolyl hydroxylase domain 2 is not enantiomer-specific and is stimulated by ferrous/ferric ion and reducing agents including L-ascorbate. The results reveal that 2-hydroxyglutarate is oxidized to 2-oxoglutarate non-enzymatically, likely via iron-mediated Fenton-chemistry, at levels supporting in vitro catalysis by 2-oxoglutarate oxygenases. Succinic semialdehyde and succinate are also identified as products of 2-hydroxyglutarate oxidation. Overall, the results rationalize the reported effects of 2-hydroxyglutarate on catalysis by prolyl hydroxylases in vitro and suggest that non-enzymatic 2-hydroxyglutarate oxidation may be of biological interest.


Angewandte Chemie | 2014

Monitoring Conformational Changes in the NDM‐1 Metallo‐β‐lactamase by 19F NMR Spectroscopy

Anna M. Rydzik; Jürgen Brem; Sander S. van Berkel; Inga Pfeffer; Timothy D. W. Claridge; Christopher J. Schofield

The New Delhi metallo-β-lactamase (NDM-1) is involved in the emerging antibiotic resistance problem. Development of metallo-β-lactamases (MBLs) inhibitors has proven challenging, due to their conformational flexibility. Here we report site-selective labeling of NDM-1 with 1,1,1-trifluoro-3-bromo acetone (BFA), and its use to study binding events and conformational changes upon ligand–metal binding using 19F NMR spectroscopy. The results demonstrate different modes of binding of known NDM-1 inhibitors, including l- and D-captopril by monitoring the changing chemical environment of the active-site loop of NDM-1. The method described will be applicable to other MBLs and more generally to monitoring ligand-induced conformational changes.


ACS Chemical Biology | 2011

Structure-Guided Design of Cell Wall Biosynthesis Inhibitors that Overcome Beta-Lactam Resistance in Staphylococcus Aureus (Mrsa).

Carlos Contreras-Martel; Ana Maria Amoroso; Esther C. Y. Woon; Astrid Zervosen; Steven R. Inglis; Alexandre Martins; Olivier Verlaine; Anna M. Rydzik; Viviane Job; André Luxen; Bernard Joris; Christopher J. Schofield; Andréa Dessen

β-Lactam antibiotics have long been a treatment of choice for bacterial infections since they bind irreversibly to Penicillin-Binding Proteins (PBPs), enzymes that are vital for cell wall biosynthesis. Many pathogens express drug-insensitive PBPs rendering β-lactams ineffective, revealing a need for new types of PBP inhibitors active against resistant strains. We have identified alkyl boronic acids that are active against pathogens including methicillin-resistant S. aureus (MRSA). The crystal structures of PBP1b complexed to 11 different alkyl boronates demonstrate that in vivo efficacy correlates with the mode of inhibitor side chain binding. Staphylococcal membrane analyses reveal that the most potent alkyl boronate targets PBP1, an autolysis system regulator, and PBP2a, a low β-lactam affinity enzyme. This work demonstrates the potential of boronate-based PBP inhibitors for circumventing β-lactam resistance and opens avenues for the development of novel antibiotics that target Gram-positive pathogens.


Antimicrobial Agents and Chemotherapy | 2016

Interaction of Avibactam with Class B Metallo-β-Lactamases

Martine I. Abboud; Christian Damblon; Jürgen Brem; Nicolas Smargiasso; Bernard Gilbert; Anna M. Rydzik; Timothy D. W. Claridge; Christopher J. Schofield; Jean-Marie Frère

ABSTRACT β-Lactamases are the most important mechanisms of resistance to the β-lactam antibacterials. There are two mechanistic classes of β-lactamases: the serine β-lactamases (SBLs) and the zinc-dependent metallo-β-lactamases (MBLs). Avibactam, the first clinically useful non-β-lactam β-lactamase inhibitor, is a broad-spectrum SBL inhibitor, which is used in combination with a cephalosporin antibiotic (ceftazidime). There are multiple reports on the interaction of avibactam with SBLs but few such studies with MBLs. We report biochemical and biophysical studies on the binding and reactivity of avibactam with representatives from all 3 MBL subfamilies (B1, B2, and B3). Avibactam has only limited or no activity versus MBL-mediated resistance in pathogens. Avibactam does not inhibit MBLs and binds only weakly to most of the MBLs tested; in some cases, avibactam undergoes slow hydrolysis of one of its urea N-CO bonds followed by loss of CO2, in a process different from that observed with the SBLs studied. The results suggest that while the evolution of MBLs that more efficiently catalyze avibactam hydrolysis should be anticipated, pursuing the development of dual-action SBL and MBL inhibitors based on the diazabicyclooctane core of avibactam may be productive.


ChemBioChem | 2012

Development and application of a fluoride-detection-based fluorescence assay for γ-butyrobetaine hydroxylase.

Anna M. Rydzik; Ivanhoe K. H. Leung; Grazyna Kochan; Armin Thalhammer; U. Oppermann; Timothy D. W. Claridge; Christopher J. Schofield

Fluoride assays for oxygenases: The 2-oxoglutarate-dependent oxygenase BBOX catalyses the final step in carnitine biosynthesis and is a medicinal chemistry target. We report that BBOX can hydroxylate fluorinated substrates analogues with subsequent release of a fluoride ion, thereby enabling an efficient fluorescence-based assay.


Chemistry: A European Journal | 2016

Cation–π Interactions Contribute to Substrate Recognition in γ‐Butyrobetaine Hydroxylase Catalysis

Jos J. A. G. Kamps; Amjad Khan; Hwanho Choi; Robert K. Lesniak; Jürgen Brem; Anna M. Rydzik; Michael A. McDonough; Christopher J. Schofield; Timothy D. W. Claridge; Jasmin Mecinović

Abstract γ‐Butyrobetaine hydroxylase (BBOX) is a non‐heme FeII‐ and 2‐oxoglutarate‐dependent oxygenase that catalyzes the stereoselective hydroxylation of an unactivated C−H bond of γ‐butyrobetaine (γBB) in the final step of carnitine biosynthesis. BBOX contains an aromatic cage for the recognition of the positively charged trimethylammonium group of the γBB substrate. Enzyme binding and kinetic analyses on substrate analogues with P and As substituting for N in the trimethylammonium group show that the analogues are good BBOX substrates, which follow the efficiency trend N+>P+>As+. The results reveal that an uncharged carbon analogue of γBB is not a BBOX substrate, thus highlighting the importance of the energetically favorable cation–π interactions in productive substrate recognition.

Collaboration


Dive into the Anna M. Rydzik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge