Anna-Maria Joseph
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna-Maria Joseph.
The Journal of Experimental Biology | 2006
David A. Hood; Isabella Irrcher; Vladimir Ljubicic; Anna-Maria Joseph
SUMMARY Skeletal muscle is a highly malleable tissue, capable of pronounced metabolic and morphological adaptations in response to contractile activity (i.e. exercise). Each bout of contractile activity results in a coordinated alteration in the expression of a variety of nuclear DNA and mitochondrial DNA (mtDNA) gene products, leading to phenotypic adaptations. This results in an increase in muscle mitochondrial volume and changes in organelle composition, referred to as mitochondrial biogenesis. The functional consequence of this biogenesis is an improved resistance to fatigue. Signals initiated by the exercise bout involve changes in intracellular Ca2+ as well as alterations in energy status (i.e. ATP/ADP ratio) and the consequent activation of downstream kinases such as AMP kinase and Ca2+-calmodulin-activated kinases. These kinases activate transcription factors that bind DNA to affect the transcription of genes, the most evident manifestation of which occurs during the post-exercise recovery period when energy metabolism is directed toward anabolism, rather than contractile activity. An important protein that is affected by exercise is the transcriptional coactivator PGC-1α, which cooperates with multiple transcription factors to induce the expression of nuclear genes encoding mitochondrial proteins. Once translated in the cytosol, these mitochondrially destined proteins are imported into the mitochondrial outer membrane, inner membrane or matrix space via specific import machinery transport components. Contractile activity affects the expression of the import machinery, as well as the kinetics of import, thus facilitating the entry of newly synthesized proteins into the expanding organelle. An important set of proteins that are imported are the mtDNA transcription factors, which influence the expression and replication of mtDNA. While mtDNA contributes only 13 proteins to the synthesis of the organelle, these proteins are vital for the proper assembly of multi-subunit complexes of the respiratory chain, when combined with nuclear-encoded protein subunits. The expansion of skeletal muscle mitochondria during organelle biogenesis involves the assembly of an interconnected network system (i.e. a mitochondrial reticulum). This expansion of membrane size is influenced by the balance between mitochondrial fusion and fission. Thus, mitochondrial biogenesis is an adaptive process that requires the coordination of multiple cellular events, including the transcription of two genomes, the synthesis of lipids and proteins and the stoichiometric assembly of multisubunit protein complexes into a functional respiratory chain. Impairments at any step can lead to defective electron transport, a subsequent failure of ATP production and an inability to maintain energy homeostasis.
Journal of Cell Science | 2010
Arnold Y. Seo; Anna-Maria Joseph; Debapriya Dutta; Judy C.Y. Hwang; John P. Aris; Christiaan Leeuwenburgh
A decline in mitochondrial function plays a key role in the aging process and increases the incidence of age-related disorders. A deeper understanding of the intricate nature of mitochondrial dynamics, which is described as the balance between mitochondrial fusion and fission, has revealed that functional and structural alterations in mitochondrial morphology are important factors in several key pathologies associated with aging. Indeed, a recent wave of studies has demonstrated the pleiotropic role of fusion and fission proteins in numerous cellular processes, including mitochondrial metabolism, redox signaling, the maintenance of mitochondrial DNA and cell death. Additionally, mitochondrial fusion and fission, together with autophagy, have been proposed to form a quality-maintenance mechanism that facilitates the removal of damaged mitochondria from the cell, a process that is particularly important to forestall aging. Thus, dysfunctional regulation of mitochondrial dynamics might be one of the intrinsic causes of mitochondrial dysfunction, which contributes to oxidative stress and cell death during the aging process. In this Commentary, we discuss recent studies that have converged at a consensus regarding the involvement of mitochondrial dynamics in key cellular processes, and introduce a possible link between abnormal mitochondrial dynamics and aging.
Sports Medicine | 2003
Isabella Irrcher; Peter J. Adhihetty; Anna-Maria Joseph; Vladimir Ljubicic; David A. Hood
Behavioural and hereditary conditions are known to decrease mitochondrial volume and function within skeletal muscle. This reduces endurance performance, and is manifest both at high- and low-intensity levels of exertion. A programme of regular endurance exercise, undertaken over a number of weeks, produces significant adaptations within skeletal muscle such that noticeable improvements in oxidative capacity are evident, and the related decline in endurance performance can be attenuated. Notwithstanding the important implications that this has for the highly trained endurance athlete, an improvement in mitochondrial volume and function through regular physical activity also endows the previously sedentary and/or aging population with an improved quality of life, and a greater functional independence. An understanding of the molecular and cellular mechanisms that govern the increases in mitochondrial volume with repeated bouts of exercise can provide insights into possible therapeutic interventions to care for those with mitochondrially-based diseases, and those unable to withstand regular physical activity. This review focuses on the recent developments in the molecular aspects of mitochondrial biogenesis in chronically exercising muscle. Specifically, we discuss the initial signalling events triggered by muscle contraction, the activation of transcription factors involved in both nuclear and mitochondrial DNA transcription, as well as the post-translational import mechanisms required for mitochondrial biogenesis. We consider the importance and relevance of chronic physical activity in the induction of mitochondrial biogenesis, with particular emphasis on how an endurance training programme could positively affect the age-related decline in mitochondrial content and delay the progression of age- and physical inactivity-related diseases.
Experimental Physiology | 2003
Peter J. Adhihetty; Isabella Irrcher; Anna-Maria Joseph; Vladimir Ljubicic; David A. Hood
Regularly performed exercise in the form of endurance training produces a well‐established adaptation in skeletal muscle termed mitochondrial biogenesis. The physiological benefit of this is an enhanced performance of muscle when subject to endurance exercise. This is not only of great advantage for athletic endeavours, but it also clearly improves the quality of life of previously sedentary individuals and those involved in injury rehabilitation. Here we review the molecular basis for mitochondrial biogenesis in muscle, from the initial signals arising in contracting muscle, to the transcription factors involved in mitochondrial and nuclear DNA transcription, as well as the post‐translational import mechanisms required for the synthesis of the organelle. We discuss specific protein components associated with reactive oxygen species production, and suggest some questions which remain unanswered with respect to the role of exercise‐induced mitochondrial biogenesis in ageing, apoptosis and disease.
Aging Cell | 2012
Anna-Maria Joseph; Peter J. Adhihetty; Thomas W. Buford; Stephanie E. Wohlgemuth; Hazel A. Lees; Linda M.-D. Nguyen; Juan M. Aranda; Bhanu D. Sandesara; Marco Pahor; Todd M. Manini; Emanuele Marzetti; Christiaan Leeuwenburgh
Age‐related loss of muscle mass and strength (sarcopenia) leads to a decline in physical function and frailty in the elderly. Among the many proposed underlying causes of sarcopenia, mitochondrial dysfunction is inherent in a variety of aged tissues. The intent of this study was to examine the effect of aging on key groups of regulatory proteins involved in mitochondrial biogenesis and how this relates to physical performance in two groups of sedentary elderly participants, classified as high‐ and low‐functioning based on the Short Physical Performance Battery test. Muscle mass was decreased by 38% and 30% in low‐functioning elderly (LFE) participants when compared to young and high‐functioning elderly participants, respectively, and positively correlated to physical performance. Mitochondrial respiration in permeabilized muscle fibers was reduced (41%) in the LFE group when compared to the young, and this was associated with a 30% decline in cytochrome c oxidase activity. Levels of key metabolic regulators, SIRT3 and PGC‐1α, were significantly reduced (50%) in both groups of elderly participants when compared to young. Similarly, the fusion protein OPA1 was lower in muscle from elderly subjects; however, no changes were detected in Mfn2, Drp1 or Fis1 among the groups. In contrast, protein import machinery components Tom22 and cHsp70 were increased in the LFE group when compared to the young. This study suggests that aging in skeletal muscle is associated with impaired mitochondrial function and altered biogenesis pathways and that this may contribute to muscle atrophy and the decline in muscle performance observed in the elderly population.
Biochimica et Biophysica Acta | 2010
Vladimir Ljubicic; Anna-Maria Joseph; Ayesha Saleem; Giulia Uguccioni; Melania Collu-Marchese; Ruanne Y.J. Lai; Linda M.-D. Nguyen; David A. Hood
Acute contractile activity of skeletal muscle initiates the activation of signaling kinases. This promotes the phosphorylation of transcription factors, leading to enhanced DNA binding and transcriptional activation and/or repression. The mRNA products of nuclear genes encoding mitochondrial proteins are translated in the cytosol and imported into pre-existing mitochondria. When contractile activity is repeated, the recapitulation of these cellular events progressively leads to an expansion of the mitochondrial reticulum within muscle. This has physiologically relevant health benefit, including enhanced lipid metabolism and reduced muscle fatigability. In aging skeletal muscle, the response to contractile activity appears to be attenuated, suggesting that a greater contractile stimulus is required to attain a similar phenotype adaptation. This review summarizes our current understanding of the effects of exercise on the gene expression pathway leading to organelle biogenesis in muscle.
Biological Chemistry | 2013
Riccardo Calvani; Anna-Maria Joseph; Peter J. Adhihetty; Alfredo Miccheli; Maurizio Bossola; Christiaan Leeuwenburgh; Roberto Bernabei; Emanuele Marzetti
Abstract Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a major factor underlying sarcopenia and muscle atrophy. Damaged mitochondria are not only less bioenergetically efficient, but also generate increased amounts of reactive oxygen species, interfere with cellular quality control mechanisms, and display a greater propensity to trigger apoptosis. Thus, mitochondria stand at the crossroad of signaling pathways that regulate skeletal myocyte function and viability. Studies on these pathways have sometimes provided unexpected and counterintuitive results, which suggests that they are organized into a complex, heterarchical network that is currently insufficiently understood. Untangling the complexity of such a network will likely provide clinicians with novel and highly effective therapeutics to counter the muscle loss associated with aging and disuse. In this review, we summarize the current knowledge on the mechanisms whereby mitochondrial dysfunction intervenes in the pathogenesis of sarcopenia and disuse atrophy, and highlight the prospect of targeting specific processes to treat these conditions.
Experimental Diabetes Research | 2012
Anna-Maria Joseph; Denis R. Joanisse; Richard Baillot; David A. Hood
Muscle mitochondrial metabolism is a tightly controlled process that involves the coordination of signaling pathways and factors from both the nuclear and mitochondrial genomes. Perhaps the most important pathway regulating metabolism in muscle is mitochondrial biogenesis. In response to physiological stimuli such as exercise, retrograde signaling pathways are activated that allow crosstalk between the nucleus and mitochondria, upregulating hundreds of genes and leading to higher mitochondrial content and increased oxidation of substrates. With type 2 diabetes, these processes can become dysregulated and the ability of the cell to respond to nutrient and energy fluctuations is diminished. This, coupled with reduced mitochondrial content and altered mitochondrial morphology, has been directly linked to the pathogenesis of this disease. In this paper, we will discuss our current understanding of mitochondrial dysregulation in skeletal muscle as it relates to type 2 diabetes, placing particular emphasis on the pathways of mitochondrial biogenesis and mitochondrial dynamics, and the therapeutic value of exercise and other interventions.
PLOS ONE | 2013
Anna-Maria Joseph; Peter J. Adhihetty; Nicholas R. Wawrzyniak; Stephanie E. Wohlgemuth; Anna Picca; Gregory C. Kujoth; Tomas A. Prolla; Christiaan Leeuwenburgh
Mitochondrial DNA (mtDNA) mutations lead to decrements in mitochondrial function and accelerated rates of these mutations has been linked to skeletal muscle loss (sarcopenia). The purpose of this study was to investigate the effect of mtDNA mutations on mitochondrial quality control processes in skeletal muscle from animals (young; 3–6 months and older; 8–15 months) expressing a proofreading-deficient version of mtDNA polymerase gamma (PolG). This progeroid aging model exhibits elevated mtDNA mutation rates, mitochondrial dysfunction, and a premature aging phenotype that includes sarcopenia. We found increased expression of the mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and its target proteins, nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (Tfam) in PolG animals compared to wild-type (WT) (P<0.05). Muscle from older PolG animals displayed higher mitochondrial fission protein 1 (Fis1) concurrent with greater induction of autophagy, as indicated by changes in Atg5 and p62 protein content (P<0.05). Additionally, levels of the Tom22 import protein were higher in PolG animals when compared to WT (P<0.05). In contrast, muscle from normally-aged animals exhibited a distinctly different expression profile compared to PolG animals. Older WT animals appeared to have higher fusion (greater Mfn1/Mfn2, and lower Fis1) and lower autophagy (Beclin-1 and p62) compared to young WT suggesting that autophagy is impaired in aging muscle. In conclusion, muscle from mtDNA mutator mice display higher mitochondrial fission and autophagy levels that likely contribute to the sarcopenic phenotype observed in premature aging and this differs from the response observed in normally-aged muscle.
Muscle & Nerve | 2013
Sobia Iqbal; Olga Ostojic; Kaustabh Singh; Anna-Maria Joseph; David A. Hood
Introduction: The mitochondrial network within cells is mediated by fission and fusion processes. Methods: We investigated the expression of the proteins responsible for these events during conditions of altered oxidative capacity. Results: With chronic contractile activity, the mitochondrial reticulum increased in size, along with concomitant increases in the fusion proteins Opa1 and Mfn2 (by 36% and 53%; P < 0.05). When we induced muscle disuse through denervation for 7 days, fragmented mitochondria were observed, along with significant decreases in the expression of Mfn2 and Opa1 (by 84% and 70%). To assess the effects of aging on mitochondrial morphology, young (5 month) and aged (35 month) Fisher 344 Brown Norway rats were used. Aged animals also possessed smaller mitochondria and displayed increased levels of fission proteins. Conclusions: Chronic muscle use increases the ratio of fusion:fission proteins, leading to reticular mitochondria, whereas muscle disuse and aging result in a decrease in this ratio, culminating in fragmented organelles. Muscle Nerve 48: 963–970, 2013