Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Maria Malfitano is active.

Publication


Featured researches published by Anna Maria Malfitano.


Pharmacological Reviews | 2012

Pharmacological Actions of Statins: A Critical Appraisal in the Management of Cancer

Patrizia Gazzerro; Maria Chiara Proto; Giuseppina Gangemi; Anna Maria Malfitano; Elena Ciaglia; Simona Pisanti; Antonietta Santoro; Chiara Laezza; Maurizio Bifulco

Statins, among the most commonly prescribed drugs worldwide, are cholesterol-lowering agents used to manage and prevent cardiovascular and coronary heart diseases. Recently, a multifaceted action in different physiological and pathological conditions has been also proposed for statins, beyond anti-inflammation and neuroprotection. Statins have been shown to act through cholesterol-dependent and -independent mechanisms and are able to affect several tissue functions and modulate specific signal transduction pathways that could account for statin pleiotropic effects. Typically, statins are prescribed in middle-aged or elderly patients in a therapeutic regimen covering a long life span during which metabolic processes, aging, and concomitant novel diseases, including cancer, could occur. In this context, safety, toxicity, interaction with other drugs, and the state of health have to be taken into account in subjects treated with statins. Some evidence has shown a dichotomous effect of statins with either cancer-inhibiting or -promoting effects. To date, clinical trials failed to demonstrate a reduced cancer occurrence in statin users and no sufficient data are available to define the long-term effects of statin use over a period of 10 years. Moreover, results from clinical trials performed to evaluate the therapeutic efficacy of statins in cancer did not suggest statin use as chemotherapeutic or adjuvant agents. Here, we reviewed the pharmacology of the statins, providing a comprehensive update of the current knowledge of their effects on tissues, biological processes, and pathological conditions, and we dissected the disappointing evidence on the possible future use of statin-based drugs in cancer therapy.


Molecular Pharmacology | 2006

The Cannabinoid CB1 Receptor Antagonist Rimonabant (SR141716) Inhibits Human Breast Cancer Cell Proliferation through a Lipid Raft-Mediated Mechanism

Daniela Sarnataro; Simona Pisanti; Antonietta Santoro; Patrizia Gazzerro; Anna Maria Malfitano; Chiara Laezza; Maurizio Bifulco

The endocannabinoid system has been shown to modulate key cell-signaling pathways involved in cancer cell growth. In this study, we show that cannabinoid receptor type 1 (CB1) antagonist Rimonabant (SR141716) inhibited human breast cancer cell proliferation, being more effective in highly invasive metastatic MDA-MB-231 cells than in less-invasive T47D and MCF-7 cells. The SR141716 antiproliferative effect was not accompanied by apoptosis or necrosis and was characterized by a G1/S-phase cell cycle arrest, decreased expression of cyclin D and E, and increased levels of cyclin-dependent kinase inhibitor p27KIP1. We have also shown that SR141716 exerted a significant antiproliferative action, in vivo, by reducing the volume of xenograft tumors induced by MDA-MB-231 injection in mice. On the other hand, at the concentration range in which we observed the antiproliferative effect in tumor cells, we did not observe evidence of any genotoxic effect on normal cells. Our data also indicate that the SR141716 antiproliferative effect requires lipid raft/caveolae integrity to occur. Indeed, we found that CB1 receptor (CB1R) is completely displaced from lipid rafts in SR141716-treated MDA-MB-231 cells, and cholesterol depletion by methyl-β-cyclodextrin strongly prevented SR141716-mediated antiproliferative effect. Taken together, our results suggest that SR141716 inhibits human breast cancer cell growth via a CB1R lipid raft/caveolae-mediated mechanism.


Best Practice & Research Clinical Endocrinology & Metabolism | 2009

Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents

Simona Pisanti; Anna Maria Malfitano; Claudia Grimaldi; Antonietta Santoro; Patrizia Gazzerro; Chiara Laezza; Maurizio Bifulco

Cannabinoids (the active components of Cannabis sativa) and their derivatives have received renewed interest in recent years due to their diverse pharmacological activities. In particular, cannabinoids offer potential applications as anti-tumour drugs, based on the ability of some members of this class of compounds to limit cell proliferation and to induce tumour-selective cell death. Although synthetic cannabinoids may have pro-tumour effects in vivo due to their immunosuppressive properties, predominantly inhibitory effects on tumour growth and migration, angiogenesis, metastasis, and also inflammation have been described. Emerging evidence suggests that agonists of cannabinoid receptors expressed by tumour cells may offer a novel strategy to treat cancer. In this chapter we review the more recent results generating interest in the field of cannabinoids and cancer, and provide novel suggestions for the development, exploration and use of cannabinoid agonists for cancer therapy, not only as palliative but also as curative drugs.


Seminars in Immunology | 2014

What we know and do not know about the cannabinoid receptor 2 (CB2)

Anna Maria Malfitano; Sreemanti Basu; Katarzyna Maresz; Maurizio Bifulco; Bonnie N. Dittel

It has been well appreciated that the endocannabinoid system can regulate immune responses via the cannabinoid receptor 2 (CB2), which is primarily expressed by cells of the hematopoietic system. The endocannabinoid system is composed of receptors, ligands and enzymes controlling the synthesis and degradation of endocannabinoids. Along with endocannabinoids, both plant-derived and synthetic cannabinoids have been shown to bind to and signal through CB2 via G proteins leading to both inhibitory and stimulatory signals depending on the biological process. Because no cannabinoid ligand has been identified that only binds to CB2, the generation of mice deficient in CB2 has greatly expanded our knowledge of how CB2 contributes to immune cell development and function in health and disease. In regards to humans, genetic studies have associated CB2 with a variety of human diseases. Here, we review the endocannabinoid system with an emphasis on CB2 and its role in the immune system.


Expert Opinion on Therapeutic Targets | 2011

Update on the endocannabinoid system as an anticancer target

Anna Maria Malfitano; Elena Ciaglia; Giuseppina Gangemi; Patrizia Gazzerro; Chiara Laezza; Maurizio Bifulco

Introduction: Recent studies have shown that the endocannabinoid system (ECS) could offer an attractive antitumor target. Numerous findings suggest the involvement of this system (constituted mainly by cannabinoid receptors, endogenous compounds and the enzymes for their synthesis and degradation) in cancer cell growth in vitro and in vivo. Areas covered: This review covers literature from the past decade which highlights the potential of targeting the ECS for cancer treatment. In particular, the levels of endocannabinoids and the expression of their receptors in several types of cancer are discussed, along with the signaling pathways involved in the endocannabinoid antitumor effects. Furthermore, the beneficial and adverse effects of old and novel compounds in clinical use are discussed. Expert opinion: One direction that should be pursued in antitumor therapy is to select compounds with reduced psychoactivity. This is known to be connected to the CB1 receptor; thus, targeting the CB2 receptor is a popular objective. CB1 receptors could be maintained as a target to design new compounds, and mixed CB1–CB2 ligands could be effective if they are able to not cross the BBB. Furthermore, targeting the ECS with agents that activate cannabinoid receptors or inhibitors of endogenous degrading systems such as fatty acid amide hydrolase inhibitors may have relevant therapeutic impact on tumor growth. Additional studies into the downstream consequences of endocannabinoid treatment are required and may illuminate other potential therapeutic targets.


Journal of Cellular Physiology | 2012

Interaction of endocannabinoid system and steroid Hormones in the control of colon cancer cell growth

Maria Chiara Proto; Patrizia Gazzerro; Luciano Di Croce; Antonietta Santoro; Anna Maria Malfitano; Simona Pisanti; Chiara Laezza; Maurizio Bifulco

Increasing evidence suggest the role of the cannabinoid receptors (CBs) in the control of cell survival or death and signaling pathways involved in tumor progression. Cancer cell lines are characterized by a subtle modulation of CB levels which produces a modified responsiveness to specific ligands, but the molecular mechanisms underlying these events are poorly and partially understood. We previously provided evidence that the endocannabinoid (EC) anandamide (AEA) exerts anti‐proliferative effect likely by modulation of the expression of genes involved in the cellular fate. In this study we focused on the role of the CB1 receptor, ECs, and steroids in the mechanisms involved in colorectal cancer (CRC) cell growth inhibition in vitro. We demonstrated that, in DLD1 and SW620 cells, 17β‐estradiol induced a specific and strong up‐regulation of the CB1 receptor by triggering activation of the CB1 promoting region, localized at the exon 1 of the CNR1 gene. Moreover, treatment of DLD1 and SW620 cells with Met‐F‐AEA, a stable AEA‐analogous, or URB597, a selective inhibitor of FAAH, induced up‐regulation of CB1 expression by co‐localization of PPARγ and RXRα at the promoting region. Finally, increased availability of AEA, of both exogenous and endogenous sources, induced the expression of estrogen receptor‐beta in both cell lines. Our results partially elucidated the role of EC system in the molecular mechanisms enrolled by steroids in the inhibition of colon cancer cell growth and strongly suggested that targeting the EC system could represent a promising tool to improve the efficacy of CRC treatments. J. Cell. Physiol. 227: 250–258, 2012.


International Journal of Cancer | 2009

Rimonabant inhibits human colon cancer cell growth and reduces the formation of precancerous lesions in the mouse colon

Antonietta Santoro; Simona Pisanti; Claudia Grimaldi; Angelo A. Izzo; Francesca Borrelli; Maria Chiara Proto; Anna Maria Malfitano; Patrizia Gazzerro; Chiara Laezza; Maurizio Bifulco

The selective CB1 receptor antagonist rimonabant (SR141716) was shown to perform a number of biological effects in several pathological conditions. Emerging findings demonstrate that rimonabant exerts antitumor action in thyroid tumors and breast cancer cells. In our study, human colorectal cancer cells (DLD‐1, CaCo‐2 and SW620) were treated with rimonabant and analyzed for markers of cell proliferation, cell viability and cell cycle progression. Rimonabant significantly reduced cell growth and induced cell death. In addition, rimonabant was able to alter cell cycle distribution in all the cell lines tested. Particularly, rimonabant produced a G2/M cell cycle arrest in DLD‐1 cells without inducing apoptosis or necrosis. The G2/M phase arrest was characterized by a parallel enhancement of the number of mitoses associated to elevated DNA double strand breaks and chromosome misjoining events, hallmarks of mitotic catastrophe. Protein expression analyses of Cyclin B1, PARP‐1, Aurora B and phosphorylated p38/MAPK and Chk1 demonstrated that rimonabant‐induced mitotic catastrophe is mediated by interfering with the spindle assembly checkpoint and the DNA damage checkpoint. Moreover, in the mouse model of azoxymethane‐induced colon carcinogenesis, rimonabant significantly decreased aberrant crypt foci (ACF) formation, which precedes colorectal cancer. Our findings suggest that rimonabant is able to inhibit colorectal cancer cell growth at different stages of colon cancer pathogenesis inducing mitotic catastrophe in vitro.


Pharmacological Research | 2014

Statins in neurological disorders: An overview and update ☆

Anna Maria Malfitano; Giuseppe Marasco; Maria Chiara Proto; Chiara Laezza; Patrizia Gazzerro; Maurizio Bifulco

Statins have, at present, the potential to provide a new therapeutic target for various neurological diseases. It is well established that statins reduce cholesterol levels and prevent coronary heart disease. Moreover, evidence suggest that statins have additional properties such as endothelial protection via action on the nitric oxide synthase system as well as antioxidant, anti-inflammatory and anti-platelet effects. These properties might have potential therapeutic implication not only in stroke but also in neurological disorders such as Alzheimer disease, Parkinsons disease, multiple sclerosis and primary brain tumors. In addition to their potent anti-atherosclerotic and cardio-protective effects, compelling clinical and preclinical studies delineate the neuro-protective efficacy of statins in all these neurological disorders. It is apparent from these studies that most patients with central nervous system disorders probably benefit to some extent from lipid-lowering therapy. But data are not univocal, and we must also consider the adverse effects due to the administration of lipid-lowering therapy. Thus, in these scenarios the effectiveness of statins in treating stroke, Alzheimers disease, Parkinson disease, multiple sclerosis, and primary brain tumors have to be conclusively proven in vivo and/or in adequate clinical trials.


British Journal of Pharmacology | 2009

Rimonabant (SR141716) exerts anti‐proliferative and immunomodulatory effects in human peripheral blood mononuclear cells

Anna Maria Malfitano; Chiara Laezza; Simona Pisanti; Patrizia Gazzerro; Maurizio Bifulco

Rimonabant (SR141716) is the first selective cannabinoid receptor CB1 antagonist described. Along with its anti‐obesity action, emerging findings show potential anti‐proliferative and anti‐inflammatory action of SR141716 in several in vitro and in vivo models. In this study we have investigated the anti‐proliferative and immunomodulatory effects of SR141716 in human peripheral blood mononuclear cells (PBMCs).


European Journal of Cancer | 2012

Anandamide inhibits the Wnt/β-catenin signalling pathway in human breast cancer MDA MB 231 cells

Chiara Laezza; Alba D’Alessandro; Simona Paladino; Anna Maria Malfitano; Maria Chiara Proto; Patrizia Gazzerro; Simona Pisanti; Antonietta Santoro; Elena Ciaglia; Maurizio Bifulco

We previously showed that methyl-F-anandamide, a stable analogue of the anandamide, inhibited the growth and the progression of cultured human breast cancer cells. As accumulating evidences indicate that the constitutive activation of the canonical Wnt pathway in human breast cancer may highlight a key role for aberrant activation of the β-catenin-TCF cascade and tumour progression, we studied the anandamide effect on the key elements of Wnt pathway in breast cancer cells. In this study we described that the treatment of human breast cancer cells, MDA MB 231 cells, with methyl-F-anandamide reduced protein levels of β-catenin in the cytoplasmic and nuclear fractions inhibiting the transcriptional activation of T Cell Factor (TCF) responsive element (marker for β-catenin signalling). The anandamide treatment resulted in up-regulation of epithelial markers, like E-cadherin with a concomitant decrease in protein levels of mesenchymal markers, including vimentin and Snail1. We, furthermore, observed that the induction of experimental epithelial-mesenchymal transition by exposure to adriamycin in MCF7 human breast cancer cell line was inhibited by anandamide treatment. In the present study we reported a novel anticancer effect of anandamide involving the inhibition of epithelial-mesenchymal transition, a process triggered during progression of cancer to invasive state.

Collaboration


Dive into the Anna Maria Malfitano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Laezza

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Marasco

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge