Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Maria Posadino is active.

Publication


Featured researches published by Anna Maria Posadino.


Nanoscale Research Letters | 2011

Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide- co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies

Vanna Sanna; Anna Maria Roggio; Anna Maria Posadino; Annalisa Cossu; Salvatore Marceddu; Alberto Mariani; Valeria Alzari; Sergio Uzzau; Gianfranco Pintus; Mario Sechi

Docetaxel (Dtx) chemotherapy is the optional treatment in patients with hormone-refractory metastatic prostate cancer, and Dtx-loaded polymeric nanoparticles (NPs) have the potential to induce durable clinical responses. However, alternative formulations are needed to overcome the serious side effects, also due to the adjuvant used, and to improve the clinical efficacy of the drug.In the present study, two novel biodegradable block-copolymers, poly(lactide-co-caprolactone) (PLA-PCL) and poly(lactide-co-caprolactone-co-glycolide) (PLGA-PCL), were explored for the formulation of Dtx-loaded NPs and compared with PLA- and PLGA-NPs. The nanosystems were prepared by an original nanoprecipitation method, using Pluronic F-127 as surfactant agent, and were characterized in terms of morphology, size distribution, encapsulation efficiency, crystalline structure, and in vitro release. To evaluate the potential anticancer efficacy of a nanoparticulate system, in vitro cytotoxicity studies on human prostate cancer cell line (PC3) were carried out. NPs were found to be of spherical shape with an average diameter in the range of 100 to 200 nm and a unimodal particle size distribution. Dtx was incorporated into the PLGA-PCL NPs with higher (p < 0.05) encapsulation efficiency than that of other polymers. Differential scanning calorimetry suggested that Dtx was molecularly dispersed in the polymeric matrices. In vitro drug release study showed that release profiles of Dtx varied on the bases of characteristics of polymers used for formulation. PLA-PCL and PLGA-PCL drug loaded NPs shared an overlapping release profiles, and are able to release about 90% of drug within 6 h, when compared with PLA- and PLGA-NPs. Moreover, cytotoxicity studies demonstrated advantages of the Dtx-loaded PLGA-PCL NPs over pure Dtx in both time- and concentration-dependent manner. In particular, an increase of 20% of PC3 growth inhibition was determined by PLGA-PCL NPs with respect to free drug after 72 h incubation and at all tested Dtx concentration. In summary, PLGA-PCL copolymer may be considered as an attractive and promising polymeric material for the formulation of Dtx NPs as delivery system for prostate cancer treatment, and can also be pursued as a validated system in a more large context.


Archives of Biochemistry and Biophysics | 2002

The anti-metastatic agent imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate induces endothelial cell apoptosis by inhibiting the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway.

Bastiano Sanna; Marcella Debidda; Gianfranco Pintus; Bruna Tadolini; Anna Maria Posadino; Federico Bennardini; Gianni Sava; Carlo Ventura

Imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate (NAMI-A) is a new ruthenium compound active against lung metastasis in vivo and tumor cell invasion in vitro. Since angiogenesis was recognized as a key event in the metastasizing process, the manipulation of neo-vessel formation has been developed as a new therapeutic approach. Within this context, a pivotal role for apoptosis in regulating cellular growth has been proposed. In the present study, we exposed to NAMI-A the spontaneously transformed human endothelial cell line ECV304 and assessed a number of apoptosis-related features, including the DNA degradation rate, the activation of caspase-3 protease, the expression of Hsp27, and the release of cytochrome c. Cell treatment with NAMI-A elicited a significant increment in the apoptotic response, as indicated by DNA fragmentation and caspase-3 activation, two classical hallmarks of cellular suicide. Furthermore, NAMI-A was able to down-regulate Hsp27 protein expression and provoke the release of mitochondrial cytochrome c in the cytosol. Here, we analyze the involvement of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signal transduction pathway in the induction of apoptosis elicited by NAMI-A. Such a response was associated with a marked inhibition of MAPK/ERK kinase (MEK) and ERK phosphorylation with a time course and dose dependency overlapping those observed throughout NAMI-A-induced apoptosis. In addition, we report that PD98059, a selective MEK inhibitor, is able to induce apoptosis by itself in the ECV304 cell line. These results suggest that inhibition of MEK/ERK signaling by NAMI-A may have an important role in modulating an apoptotic event in ECV304.


Journal of Biological Chemistry | 1998

Nuclear opioid receptors activate opioid peptide gene transcription in isolated myocardial nuclei.

Carlo Ventura; Margherita Maioli; Gianfranco Pintus; Anna Maria Posadino; Bruna Tadolini

Opioid-binding sites were identified in highly purified nuclei isolated from hamster ventricular myocardial cells. A significant increase in the maximal binding capacity for a κ opioid receptor ligand was observed in myocardial nuclei from BIO 14.6 cardiomyopathic hamsters, as compared with nuclei obtained from normal myocytes of the F1B strain. The exposure of isolated nuclei to dynorphin B, a natural agonist of κ opioid receptors, markedly increased opioid peptide gene transcription. The transcriptional effect was mediated by nuclear protein kinase C activation and occurred at a higher rate in nuclei from cardiomyopathic myocytes than in nuclei isolated from normal cells. Thus, a nuclear endorphinergic system may play an intracrine role in the regulation of gene transcription under both normal and pathological conditions.


Cardiovascular Research | 2003

PKC/Raf/MEK/ERK signaling pathway modulates native-LDL-induced E2F-1 gene expression and endothelial cell proliferation

Gianfranco Pintus; Bruna Tadolini; Anna Maria Posadino; Bastiano Sanna; Marcella Debidda; Ciriaco Carru; Luca Deiana; Carlo Ventura

BACKGROUND AND OBJECTIVES The interactions of low-density lipoprotein (LDL) with the endothelium are thought to play a major role in the development of atherosclerosis. Due to this reason, the molecular sequelae of events resulting from native LDL (N-LDL) interaction with human endothelial cells (HECs) are largely under investigation. METHODS AND RESULTS Here, we report that the exposure of serum-free HECs to different concentrations of N-LDL-cholesterol (LDL-chol) elicited a time- and dose-dependent induction of DNA synthesis. The exposure of serum-free HECs to N-LDL was able to elicit a time- and dose-dependent increase of protein kinase C (PKC) activity that, along with the activation of the Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway, leads to an increase in E2F-1 gene expression. In addition, the treatment of HECs with N-LDL was also able to induce both E2F-1 gene transcription and protein expression. These N-LDL-aroused responses were dramatically counteracted by PKC inhibition or down regulation. Similarly to what observed for Raf/MEK/ERK activation and E2F-1 gene expression, the inhibition of PKC as well as its down regulation, significantly lowered the DNA synthesis induced by N-LDL in serum-free HECs. CONCLUSIONS These results suggest that the activation of PKC/Raf/MEK/ERK-mediated events controlling E2F-1 gene expression by N-LDL may represent an important mechanism in the regulation of HECs proliferation during normal and pathological processes.


Toxicological Sciences | 2010

Akt downregulation by flavin oxidase–induced ROS generation mediates dose-dependent endothelial cell damage elicited by natural antioxidants

Valeria Pasciu; Anna Maria Posadino; Annalisa Cossu; Bastiano Sanna; Bruna Tadolini; Leonardo Gaspa; Andrea Marchisio; Salvatore Dessole; Giampiero Capobianco; Gianfranco Pintus

High intake of natural antioxidants (NA) from plant-derived foods and beverages is thought to provide cardiovascular benefits. The endothelium plays a pivotal role in cardiovascular homeostasis, and for this reason, the molecular events resulting from NA actions on endothelial cells (ECs) are actively investigated. Here, we show the direct impact of two NA, coumaric acid and resveratrol, on intracellular reactive oxygen species levels, protein carbonylation, and cell physiology in human ECs. While at lower doses, both NA promoted antioxidant effects, at moderately high doses, NA elicited a dose-dependent pro-oxidant effect, which was followed by apoptosis, cell damage, and phospho-Akt downregulation. NA-induced pro-oxidant effects were counteracted by N-acetyl cysteine and diphenyleneiodonium (DPI), suggesting a role for flavin oxidases in NA-induced toxicity. DPI also prevented NA-induced phospho-Akt downregulation indicating that Akt can work downstream of flavin oxidases in mediating cellular responses to NA. Stimulation of phospho-Akt by insulin dramatically counteracted NA-induced cell death, an effect abolished by Akt inhibition further suggesting that mechanistically Akt regulates cell survival in response to NA-induced stress. Although further studies are required to better characterize the molecular mechanism of NA-induced cell toxicity, our study is the first to show in a human vascular model that moderately high doses of NA can induce cell damage mediated by flavoproteins and the Akt pathway.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Gestational Diabetes Mellitus Impairs Fetal Endothelial Cell Functions Through a Mechanism Involving MicroRNA-101 and Histone Methyltransferase Enhancer of Zester Homolog-2

Ilaria Floris; Betty Descamps; Tijana Mitić; Anna Maria Posadino; Saran Shantikumar; Graciela B. Sala-Newby; Gianpiero Capobianco; Giuseppe Mangialardi; Lynsey Howard; Salvatore Dessole; Raul Urrutia; Gianfranco Pintus; Costanza Emanueli

Objective— Gestational diabetes mellitus (GDM) produces fetal hyperglycemia with increased lifelong risks for the exposed offspring of cardiovascular and other diseases. Epigenetic mechanisms induce long-term gene expression changes in response to in utero environmental perturbations. Moreover, microRNAs (miRs) control the function of endothelial cells (ECs) under physiological and pathological conditions and can target the epigenetic machinery. We investigated the functional and expressional effect of GDM on human fetal ECs of the umbilical cord vein (HUVECs). We focused on miR-101 and 1 of its targets, enhancer of zester homolog-2 (EZH2), which trimethylates the lysine 27 of histone 3, thus repressing gene transcription. EZH2 exists as isoforms &agr; and &bgr;. Approach and Results— HUVECs were prepared from GDM or healthy pregnancies and tested in apoptosis, migration, and Matrigel assays. GDM-HUVECs demonstrated decreased functional capacities, increased miR-101 expression, and reduced EZH2- &bgr; and trimethylation of histone H3 on lysine 27 levels. MiR-101 inhibition increased EZH2 expression and improved GDM-HUVEC function. Healthy HUVECs were exposed to high or normal D-glucose concentration for 48 hours and then tested for miR-101 and EZH2 expression. Similar to GDM, high glucose increased miR-101 expression. Chromatin immunoprecipitation using an antibody for EZH2 followed by polymerase chain reaction analyses for miR-101 gene promoter regions showed that both GDM and high glucose concentration reduced EZH2 binding to the miR-101 locus in HUVECs. Moreover, EZH2-&bgr; overexpression inhibited miR-101 promoter activity in HUVECs. Conclusions— GDM impairs HUVEC function via miR-101 upregulation. EZH2 is both a transcriptional inhibitor and a target gene of miR-101 in HUVECs, and it contributes to some of the miR-101-induced defects of GDM-HUVECs.


Atherosclerosis | 2009

S-homocysteinylated LDL apolipoprotein B adversely affects human endothelial cells in vitro.

Angelo Zinellu; Salvatore Sotgia; Bastianina Scanu; Gianfranco Pintus; Anna Maria Posadino; Annalisa Cossu; Luca Deiana; Shantanu Sengupta; Ciriaco Carru

OBJECTIVE In recent years elevated homocysteine (Hcy) levels have been widely recognized as a risk factor for cardiovascular diseases (CVDs) and a connection between hyperhomocysteinemia and lipid metabolism has been suggested to have a possible role in endothelial vascular damage as lipoprotein fractions contain higher Hcy levels in hypercholesterolemia, compared to normolipidemic individuals. However, the biochemical events underlying the interaction between Hcy and LDL are still poorly understood. METHODS AND RESULTS Herein we have investigated the interaction of LDL with Hcy by measuring thiols S-linked to apoprotein using capillary electrophoresis and have evaluated the effect of S-homocysteinylated LDL on human endothelial cells (HECs). We found that Hcy binds to LDL in a dose dependent manner and the saturation binding is achieved at 100 micromol/L Hcy in about 5h. Addition of Hcy resulted in a rapid displacement of other thiols bound to apoprotein and this was dependent on the concentration of Hcy added. For the first time we also demonstrated that treatment of HECs with homocysteine-S-LDL (Hcy-S-LDL) resulted in the induction of significantly higher levels of reactive oxygen species (ROS) compared to N-LDL (native LDL). Furthermore, the Hcy-S-LDL-induced a rise in intracellular ROS production was followed by a marked reduction of HECs proliferation and viability. CONCLUSIONS Although the mechanism by which Hcy-S-LDL elicits the current cellular effects needs further investigation, our data suggest that intracellular ROS production induced by Hcy-S-LDL might be responsible for the observed HECs damage and indicate that Hcy-S-LDL may have some role in CVD.


Journal of Chromatography A | 2014

Evaluation of non-covalent interactions between serum albumin and green tea catechins by affinity capillary electrophoresis

Angelo Zinellu; Salvatore Sotgia; Bastianina Scanu; Elisabetta Pisanu; Roberta Giordo; Annalisa Cossu; Anna Maria Posadino; Ciriaco Carru; Gianfranco Pintus

The natural antioxidant-associated biological responses appear contradictory since biologically active dosages registered in vitro experiments are considerably higher if compared to concentrations found in vivo. The recent research indicates that natural antioxidants, including the major catechins of green tea epicatechin (EC), epigallocatechin (EGC), epicatechingallate (ECG) and epigallocatechingallate (EGCG) form non-covalent complexes with albumin, a crucial aspect that may modulate their plasma concentration, tissue delivery and biological activity. Affinity capillary electrophoresis (ACE) was used to characterize the binding of the four catechins to human serum albumin (HSA) and bovine serum albumin (BSA) at near-physiological conditions: 10 mmol/L phosphate buffer, HEPES 50 mmol/L (pH 7.5), temperature 37°C. The studied flavonoids displayed affinities toward the albumin with binding constants in the range 10(3)-10(5)M(-1), with a greater affinity of catechins toward HSA than BSA (between 3 and 3.5 fold higher). We also confirmed that catechins having a galloyl moiety (ECG and EGCG) have a higher binding affinity toward albumin than the catechins lacking the galloyl moiety (EC and EGC), and that for both albumins the order of affinity is EC<EGC<ECG<EGCG. We believe that our work can provide useful information for better understanding the intercurrent relationships between cathechins bioavailability and their elicited biological effects.


Food and Chemical Toxicology | 2015

Resveratrol alters human endothelial cells redox state and causes mitochondrial-dependent cell death

Anna Maria Posadino; Annalisa Cossu; Roberta Giordo; Angelo Zinellu; Salvatore Sotgia; Phu Thi Hoa; Le Hong Van Nguyen; Ciriaco Carru; Gianfranco Pintus

Studies analyzing the impact of natural antioxidants (NA) on Endothelial Cells (ECs) have dramatically increased during the last years, since a deregulated ECs redox state is at the base of the onset and progression of several cardiovascular diseases. However, whether NA can provide cardiovascular benefits is still a controversial area of debate. Resveratrol (RES), a natural polyphenol found in grapes, is believed to provide cardiovascular benefits by virtue of its antioxidant effect on the endothelium. Here, we report that tissue-attainable doses of resveratrol increased the intracellular oxidative state, thus affecting mitochondrial membrane depolarization and inducing EC death. Cyclosporine A, a mitochondrial permeability transition pore inhibitor, prevented oxidative-mediated cell death, thus implicating mitochondria in resveratrol-induced EC impairment. The specific cytochrome P450 (CYP) 2C9 inhibitor, sulfaphenazole, counteracted both oxidative stress and mitochondrial membrane depolarization, providing EC protection against resveratrol-elicited pro-oxidant effects. Our findings strongly suggest that CYP2C9 mediates resveratrol-induced oxidative stress leading to mitochondria impairment and EC death.


Colloids and Surfaces B: Biointerfaces | 2017

Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy

Giovanna Rassu; Elena Soddu; Anna Maria Posadino; Gianfranco Pintus; Bruno Sarmento; Paolo Giunchedi; Elisabetta Gavini

We designed a delivery system to obtain an efficient and optimal nose-to-brain transport of BACE1 siRNA, potentially useful in the treatment of Alzheimers disease. We selected a cell-penetrating peptide, the short peptide derived from rabies virus glycoprotein known as RVG-9R, to increase the transcellular pathway in neuronal cells. The optimal molar ratio between RVG-9R and BACE1 siRNA was elucidated. The complex between the two was then encapsulated. We propose chitosan-coated and uncoated solid lipid nanoparticles (SLNs) as a nasal delivery system capable of exploiting both olfactory and trigeminal nerve pathways. The coating process had an effect on the zeta potential, obtaining positively-charged nanoparticles, and on siRNA protection. The positive charge of the coating formulation ensured mucoadhesiveness to the particles and also prolonged residence time in the nasal cavity. We studied the cellular transport of siRNA released from the SLNs using Caco-2 as a model of epithelial-like phenotypes. We found that siRNA permeates the monolayer to a greater extent when released from any of the studied formulations than from bare siRNA, and primarily from chitosan-coated SLNs.

Collaboration


Dive into the Anna Maria Posadino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge