Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Missong is active.

Publication


Featured researches published by Anna Missong.


Science China-earth Sciences | 2015

A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes

Heye Bogena; Roland Bol; N. Borchard; Nicolas Brüggemann; B. Diekkrüger; C. Drüe; J. Groh; Nina Gottselig; Johan Alexander Huisman; Andreas Lücke; Anna Missong; Burkhard Neuwirth; Thomas Pütz; M. Schmidt; M. Stockinger; Wolfgang Tappe; L. Weihermüller; Inge Wiekenkamp; Harry Vereecken

Integrated observation platforms have been set up to investigate consequences of global change within a terrestrial network of observatories (TERENO) in Germany. The aim of TERENO is to foster the understanding of water, energy, and matter fluxes in terrestrial systems, as well as their biological and physical drivers. Part of the Lower Rhine Valley-Eifel observatory of TERENO is located within the Eifel National Park. Recently, the National Park forest management started to promote the natural regeneration of near-natural beech forest by removing a significant proportion of the spruce forest that was established for timber production after World War II. Within this context, the effects of such a disturbance on forest ecosystem functioning are currently investigated in a deforestation experiment in the Wüstebach catchment, which is one of the key experimental research sites within the Lower Rhine Valley-Eifel observatory. Here, we present the integrated observation system of the Wüstebach test site to exemplarily demonstrate the terrestrial observatory concept of TERENO that allows for a detailed monitoring of changes in hydrological and biogeochemical states and fluxes triggered by environmental disturbances. We present the observation platforms and the soil sampling campaign, as well as preliminary results including an analysis of data consistency. We specifically highlight the capability of integrated datasets to enable improved process understanding of the post-deforestation changes in ecosystem functioning.


Plant and Soil | 2018

Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities

Timothy S. George; Courtney D. Giles; Daniel Menezes-Blackburn; Leo M. Condron; A. C. Gama-Rodrigues; Deb P. Jaisi; Friederike Lang; Andrew L. Neal; Marc I. Stutter; Danilo S. Almeida; Roland Bol; K. G. Cabugao; Luisella Celi; James B. Cotner; Gu Feng; D. S. Goll; M. Hallama; J. Krueger; Claude Plassard; Anna Rosling; Tegan Darch; Tandra D. Fraser; Reiner Giesler; Alan E. Richardson; Federica Tamburini; Charles A. Shand; David G. Lumsdon; Hao Zhang; M. S. A. Blackwell; Catherine Wearing

BackgroundThe dynamics of phosphorus (P) in the environment is important for regulating nutrient cycles in natural and managed ecosystems and an integral part in assessing biological resilience against environmental change. Organic P (Po) compounds play key roles in biological and ecosystems function in the terrestrial environment being critical to cell function, growth and reproduction.ScopeWe asked a group of experts to consider the global issues associated with Po in the terrestrial environment, methodological strengths and weaknesses, benefits to be gained from understanding the Po cycle, and to set priorities for Po research.ConclusionsWe identified seven key opportunities for Po research including: the need for integrated, quality controlled and functionally based methodologies; assessment of stoichiometry with other elements in organic matter; understanding the dynamics of Po in natural and managed systems; the role of microorganisms in controlling Po cycles; the implications of nanoparticles in the environment and the need for better modelling and communication of the research. Each priority is discussed and a statement of intent for the Po research community is made that highlights there are key contributions to be made toward understanding biogeochemical cycles, dynamics and function of natural ecosystems and the management of agricultural systems.


Journal of Analytical Atomic Spectrometry | 2016

Field flow fractionation online with ICP-MS as novel approach for the quantification of fine particulate carbon in stream water samples and soil extracts

Volker Nischwitz; Nina Gottselig; Anna Missong; Thomas Meyn; Erwin Klumpp

Reliable and efficient analytical techniques are required for quantitative size-resolved carbon determination of nanoparticles and colloids in complex sample matrices due to the key role of carbon in biological and environmental processes. Field flow fractionation (FFF) online with inductively coupled plasma mass spectrometry (ICP-MS) is a powerful technique for identification and quantification of particle bound metals, but has not been applied for quantitative determination of particulate carbon, yet, due to several challenges. Therefore, our study explores the potential of online particulate carbon detection by ICP-MS to overcome limitations of previously used UV detection or offline total organic carbon measurements. A novel organic carbon detector (OCD) was used as independent sensitive carbon detector to validate the ICP-MS results. Basic validation of organic carbon detection by offline quadrupole and sector-field ICP-MS was performed for fresh water samples using OCD as reference achieving recoveries of 107 ± 16% with Q-ICP-MS and 122 ± 22% with SF-ICP-MS. Limits of detection were 0.6 mg L−1 for Q-ICP-MS, 0.3 mg L−1 for SF-ICP-MS and 0.04 mg L−1 for OCD. The main focus was on comparison of FFF-ICP-MS and FFF-OCD for quantification of particulate carbon in fresh water samples, soil extracts as well as in bovine serum albumin (BSA) as candidate reference standard. Recoveries obtained by FFF-Q-ICP-MS with a flow-injection calibration approach were in a range from 90 to 113% for replicate analyses of fresh water samples compared to FFF-OCD and from 87 to 107% with an alternative post-channel calibration strategy.


Journal of Environmental Quality | 2017

A Three-Dimensional View on Soil Biogeochemistry: A Dataset for a Forested Headwater Catchment

Nina Gottselig; Inge Wiekenkamp; Weihermüller L; Nicolas Brüggemann; A.E. Berns; Heye Bogena; Nils Borchard; E. Klumpp; Andreas Lücke; Anna Missong; Thomas Pütz; Harry Vereecken; Johan Alexander Huisman; Roland Bol

Current understanding of the variability in soil properties and their relationship to processes and spatial patterns in forested landscapes is limited due to the scarcity of datasets providing such information. Here we present a spatially highly resolved dataset () that provides detailed information on the three-dimensional variability of biogeochemical properties in the Wüstebach catchment (western Germany), a long-term environmental observation site of the TERENO (Terrestrial Environmental Observatories) project. High-resolution soil sampling was conducted, and physical and biogeochemical soil parameters were recorded per horizon. The dataset is helpful in the analysis of the spatial heterogeneity in biogeochemical properties within soil horizons and with depth through the soil profile. In addition, it shows links between hydrological and biogeochemical properties and processes within the system. Overall, the dataset provides a high-resolution view into (re)cycling, leaching, and storage of nutrients on the catchment scale in a forested headwater catchment.


Science of The Total Environment | 2018

Leaching of natural colloids from forest topsoils and their relevance for phosphorus mobility

Anna Missong; Stefan Holzmann; Roland Bol; Volker Nischwitz; Heike Puhlmann; Klaus von Wilpert; Jan Siemens; Erwin Klumpp

The leaching of P from the upper 20cm of forest topsoils influences nutrient (re-)cycling and the redistribution of available phosphate and organic P forms. However, the effective leaching of colloids and associated P forms from forest topsoils was so far sparsely investigated. We demonstrated through irrigation experiments with undisturbed mesocosm soil columns, that significant proportions of P leached from acidic forest topsoils were associated with natural colloids. These colloids had a maximum size of 400nm. By means of Field-flow fractionation the leached soil colloids could be separated into three size fractions. The size and composition was comparable to colloids present in acidic forest streams known from literature. The composition of leached colloids of the three size classes was dominated by organic carbon. Furthermore, these colloids contained large concentrations of P which amounted between 12 and 91% of the totally leached P depending on the type of the forest soil. The fraction of other elements leached with colloids ranged between 1% and 25% (Fe: 1-25%; Corg: 3-17%; Al: <4%; Si, Ca, Mn: all <2%). The proportion of colloid-associated P decreased with increasing total P leaching. Leaching of total and colloid-associated P from the forest surface soil did not increase with increasing bulk soil P concentrations and were also not related to tree species. The present study highlighted that colloid-facilitated P leaching can be of higher relevance for the P leaching from forest surface soils than dissolved P and should not be neglected in soil water flux studies.


Journal of Analytical Atomic Spectrometry | 2018

Extending the capabilities of field flow fractionation online with ICP-MS for the determination of particulate carbon in latex and charcoal

Volker Nischwitz; Nina Gottselig; Anna Missong; Erwin Klumpp; Melanie Braun

There is a broad range of carbon based engineered particles including polymer latex particles and carbon black. Also in environmental systems particulate carbon such as humic acids and soot or coal (the latter two summarized as black carbon) is of great importance and is involved in nutrient storage and (re)cycling. Therefore, detailed characterisation of the size distribution and elemental composition of such particles is required to understand the material properties and their environmental relevance. Field flow fractionation (FFF) online with inductively coupled plasma mass spectrometry (ICP-MS) is routinely applied for the characterisation of metal containing particles. However, the far majority of FFF studies relies on UV detection for organic carbon while elemental detection of carbon has hardly been used. Our previous work demonstrated the capability of FFF-ICP-MS for the determination of carbon in fine particulate matter, focusing on humic acid in water samples. The current work investigates the feasibility of carbon detection and quantification in larger particles with sizes up to about 750 nm. For this purpose, latex particle size standards of 21 nm, 100 nm, 250 nm and 740 nm were analysed as well as extracts of charcoal spiked soil. Elemental analysis using combustion techniques was employed as reference for the total carbon content of the samples to establish a mass balance. Recoveries for FFF separation of latex particle standards were in the range from 69% to 83% and in the range from 78% to 104% in flow injection mode. Carbon mass balance calculated from FFF fractionation, ultrafiltration and total content for the extracts from soil and charcoal spiked soil achieved 76% to 105%. Variation of the sampling depth was investigated to check if increased dwell time of the particles in the plasma affects the carbon ionisation and quantification. No significant change of carbon recoveries was observed, yet the signal to noise ratio improved 3-fold. This study provides a method for the analyses of carbon containing particles via FFF-ICP-MS, which allows for the first time the simultaneous measurement of carbon and other nutrients and is hence more timesaving than other methods.


Plant and Soil | 2017

Correction to: Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities

Timothy S. George; Courtney D. Giles; Daniel Menezes-Blackburn; Leo M. Condron; A. C. Gama-Rodrigues; Deb P. Jaisi; Friederike Lang; Andrew L. Neal; Marc I. Stutter; Danilo S. Almeida; Roland Bol; K. G. Cabugao; Luisella Celi; James B. Cotner; Gu Feng; D. S. Goll; M. Hallama; J. Krueger; Claude Plassard; Anna Rosling; Tegan Darch; Tandra D. Fraser; Reiner Giesler; Alan E. Richardson; F. Tamburini; Charles A. Shand; David G. Lumsdon; Hao Zhang; M. S. A. Blackwell; Catherine Wearing

The article “Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities”, written by Timothy S George et al., was originally published with incorrect affiliation information for one of the co-authors, E. Klumpp.


Journal of Plant Nutrition and Soil Science | 2016

Dissolved and colloidal phosphorus fluxes in forest ecosystems-an almost blind spot in ecosystem research

Roland Bol; Dorit Julich; Dominik Brödlin; Jan Siemens; Klaus Kaiser; Michaela A. Dippold; Sandra Spielvogel; Thomas Zilla; Daniela Mewes; Friedhelm von Blanckenburg; Heike Puhlmann; Stefan Holzmann; Markus Weiler; Wulf Amelung; Friederike Lang; Yakov Kuzyakov; Karl-Heinz Feger; Nina Gottselig; Erwin Klumpp; Anna Missong; Carola Winkelmann; David Uhlig; Jakob Sohrt; Klaus von Wilpert; Bei Wu; Frank Hagedorn


Journal of Plant Nutrition and Soil Science | 2016

Phosphorus forms in forest soil colloids as revealed by liquid‐state 31P‐NMR

Anna Missong; Roland Bol; Sabine Willbold; Jan Siemens; Erwin Klumpp


Journal of Plant Nutrition and Soil Science | 2016

Impact of anthropogenic induced nitrogen input and liming on phosphorus leaching in forest soils

Stefan Holzmann; Anna Missong; Heike Puhlmann; Jan Siemens; Roland Bol; Erwin Klumpp; Klaus von Wilpert

Collaboration


Dive into the Anna Missong's collaboration.

Top Co-Authors

Avatar

Roland Bol

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Erwin Klumpp

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heike Puhlmann

Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Stefan Holzmann

Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar

J. Krueger

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

M. Hallama

University of Hohenheim

View shared research outputs
Researchain Logo
Decentralizing Knowledge