Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna O. Avrova is active.

Publication


Featured researches published by Anna O. Avrova.


Nature | 2009

Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans

Brian J. Haas; Sophien Kamoun; Michael C. Zody; Rays H. Y. Jiang; Robert E. Handsaker; Liliana M. Cano; Manfred Grabherr; Chinnappa D. Kodira; Sylvain Raffaele; Trudy Torto-Alalibo; Tolga O. Bozkurt; Audrey M. V. Ah-Fong; Lucia Alvarado; Vicky L. Anderson; Miles R. Armstrong; Anna O. Avrova; Laura Baxter; Jim Beynon; Petra C. Boevink; Stephanie R. Bollmann; Jorunn I. B. Bos; Vincent Bulone; Guohong Cai; Cahid Cakir; James C. Carrington; Megan Chawner; Lucio Conti; Stefano Costanzo; Richard Ewan; Noah Fahlgren

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world’s population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at


Nature | 2007

A translocation signal for delivery of oomycete effector proteins into host plant cells

Stephen C. Whisson; Petra C. Boevink; Lucy N. Moleleki; Anna O. Avrova; Juan Morales; Eleanor M. Gilroy; Miles R. Armstrong; Severine Grouffaud; Pieter van West; Sean Chapman; Ingo Hein; Ian K. Toth; Leighton Pritchard; Paul R. J. Birch

6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at ∼240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for ∼74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.


Molecular Plant-microbe Interactions | 1999

Isolation of Potato Genes That Are Induced During an Early Stage of the Hypersensitive Response to Phytophthora infestans

Paul R. J. Birch; Anna O. Avrova; James M. Duncan; Gary D. Lyon; Rachel L. Toth

Bacterial, oomycete and fungal plant pathogens establish disease by translocation of effector proteins into host cells, where they may directly manipulate host innate immunity. In bacteria, translocation is through the type III secretion system, but analogous processes for effector delivery are uncharacterized in fungi and oomycetes. Here we report functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors. We use the Phytophthora infestans RXLR-EER-containing protein Avr3a as a reporter for translocation because it triggers RXLR-EER-independent hypersensitive cell death following recognition within plant cells that contain the R3a resistance protein. We show that Avr3a, with or without RXLR-EER motifs, is secreted from P. infestans biotrophic structures called haustoria, demonstrating that these motifs are not required for targeting to haustoria or for secretion. However, following replacement of Avr3a RXLR-EER motifs with alanine residues, singly or in combination, or with residues KMIK-DDK—representing a change that conserves physicochemical properties of the protein—P. infestans fails to deliver Avr3a or an Avr3a–GUS fusion protein into plant cells, demonstrating that these motifs are required for translocation. We show that RXLR-EER-encoding genes are transcriptionally upregulated during infection. Bioinformatic analysis identifies 425 potential genes encoding secreted RXLR-EER class proteins in the P. infestans genome. Identification of this class of proteins provides unparalleled opportunities to determine how oomycetes manipulate hosts to establish infection.


The Plant Cell | 2008

Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato

Laura J. Grenville-Briggs; Victoria L. Anderson; Johanna Fugelstad; Anna O. Avrova; Jamel Bouzenzana; A. Williams; Stephan Wawra; Stephen C. Whisson; Paul R. J. Birch; Vincent Bulone; Pieter van West

Suppression subtractive hybridization (SSH) was used to generate a cDNA library enriched for sequences induced in a late-blight-resistant potato cultivar undergoing the hypersensitive response (HR). Of 100 partial cDNA sequences submitted to international DNA and protein data bases, 42 showed similarity to 35 genes, of which 31 were from plants. Of these, 13 were previously characterized as either defense-, stress-, or senescence-associated. One sequence matched (75 to 81%) all known serine palmitoyltransferases (SPTs) at the protein level. SPT catalyzes the first committed step in the synthesis of sphingolipids, important signaling molecules involved in cell differentiation and apoptosis. Putative products of other genes identified here may play a role in programmed cell death, including protein degradation, DNA degradation, metal ion chelation, and signal transduction. cDNA-amplified fragment length polymorphism was used to confirm differential expression of sequences isolated by SSH.


Molecular Plant Pathology | 2005

A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans.

Stephen C. Whisson; Anna O. Avrova; Pieter van West; John T. Jones

Cellulose, the important structural compound of cell walls, provides strength and rigidity to cells of numerous organisms. Here, we functionally characterize four cellulose synthase genes (CesA) in the oomycete plant pathogen Phytophthora infestans, the causal agent of potato (Solanum tuberosum) late blight. Three members of this new protein family contain Pleckstrin homology domains and form a distinct phylogenetic group most closely related to the cellulose synthases of cyanobacteria. Expression of all four genes is coordinately upregulated during pre- and early infection stages of potato. Inhibition of cellulose synthesis by 2,6-dichlorobenzonitrile leads to a dramatic reduction in the number of normal germ tubes with appressoria, severe disruption of the cell wall in the preinfection structures, and a complete loss of pathogenicity. Silencing of the entire gene family in P. infestans with RNA interference leads to a similar disruption of the cell wall surrounding appressoria and an inability to form typical functional appressoria. In addition, the cellulose content of the cell walls of the silenced lines is >50% lower than in the walls of the nonsilenced lines. Our data demonstrate that the isolated genes are involved in cellulose biosynthesis and that cellulose synthesis is essential for infection by P. infestans.


Applied and Environmental Microbiology | 2001

Rapid Identification and Differentiation of the Soft Rot Erwinias by 16S-23S Intergenic Transcribed Spacer-PCR and Restriction Fragment Length Polymorphism Analyses

Ian K. Toth; Anna O. Avrova; Lizbeth J. Hyman

SUMMARY Gene silencing, triggered by double-stranded RNA (dsRNA), has proved to be a valuable tool for determining and confirming the function of genes in many organisms. For Phytophthora infestans, the cause of late blight on potato and tomato, gene silencing strategies have relied on stable transformation followed by spontaneous silencing of both the endogenous gene and the transgene. Here we describe the first application of transient gene silencing in P. infestans, by delivering in vitro synthesized dsRNA into protoplasts to trigger silencing. A marker gene, gfp, and two P. infestans genes, inf1 and cdc14, both of which have been silenced previously, were selected to test this strategy. Green fluorescent protein (GFP) fluorescence was reduced in regenerating protoplasts up to 4 days after exposure to gfp dsRNA. A secondary reduction in expression of all genes tested was not fully activated until 12-17 days after introduction of the respective homologous dsRNAs. At this time after exposure to dsRNA, reduced GFP fluorescence in gfp dsRNA-treated lines, and reduced INF1 production in inf1 dsRNA-treated lines, was observed. Introduction of dsRNA for the stage-specific gene, cdc14, yielded the expected phenotype of reduced numbers of sporangia when cdc14 expression was significantly reduced compared with control lines. Silencing was shown to be sequence-specific, because analysis of inf1 expression in gfp-silenced lines yielded wild-type levels of gene expression. This report shows that transient gene silencing can be used to generate detectable phenotypes in P. infestans and should provide a high-throughput tool for P. infestans functional genomics.


Microbiology | 2008

Plasmodium falciparum and Hyaloperonospora parasitica effector translocation motifs are functional in Phytophthora infestans

Severine Grouffaud; Pieter van West; Anna O. Avrova; Paul R. J. Birch; Stephen C. Whisson

ABSTRACT Current identification methods for the soft rot erwinias are both imprecise and time-consuming. We have used the 16S-23S rRNA intergenic transcribed spacer (ITS) to aid in their identification. Analysis by ITS-PCR and ITS-restriction fragment length polymorphism was found to be a simple, precise, and rapid method compared to current molecular and phenotypic techniques. The ITS was amplified fromErwinia and other genera using universal PCR primers. After PCR, the banding patterns generated allowed the soft rot erwinias to be differentiated from all other Erwinia and non-Erwinia species and placed into one of three groups (I to III). Group I comprised all Erwinia carotovorasubsp. atroseptica and subsp.betavasculorum isolates. Group II comprised allE. carotovora subsp. carotovora,subsp. odorifera, and subsp. wasabiae andE. cacticida isolates, and group III comprised allE. chrysanthemi isolates. To increase the level of discrimination further, the ITS-PCR products were digested with one of two restriction enzymes. Digestion with CfoI identified E. carotovora subsp.atroseptica and subsp. betavasculorum(group I) and E. chrysanthemi (group III) isolates, while digestion with RsaI identified E. carotovora subsp. wasabiae, subsp. carotovora, and subsp.odorifera/carotovora and E. cacticida isolates (group II). In the latter case, it was necessary to distinguishE. carotovora subsp. odorifera and subsp. carotovora using the α-methyl glucoside test. Sixty suspected soft rot erwinia isolates from Australia were identified as E. carotovora subsp.atroseptica, E. chrysanthemi,E. carotovora subsp. carotovora, and non-soft rot species. Ten “atypical” E. carotovora subsp. atroseptica isolates were identified as E. carotovora subsp.atroseptica, subsp. carotovora, and subsp. betavasculorum and non-soft rot species, and two “atypical” E. carotovora subsp.carotovora isolates were identified as E. carotovora subsp. carotovora and subsp.atroseptica.


Molecular Plant-microbe Interactions | 2008

Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome.

Howard S. Judelson; Audrey M. V. Ah-Fong; George Aux; Anna O. Avrova; Catherine R. Bruce; Cahid Cakir; Luis da Cunha; Laura J. Grenville-Briggs; Maita Latijnhouwers; Wilco Ligterink; Harold J. G. Meijer; Samuel Roberts; Carrie S. Thurber; Stephen C. Whisson; Paul R. J. Birch; Francine Govers; Sophien Kamoun; Pieter van West; John Windass

The oomycete potato late blight pathogen, Phytophthora infestans, and the apicomplexan malaria parasite Plasmodium falciparum translocate effector proteins inside host cells, presumably to the benefit of the pathogen or parasite. Many oomycete candidate secreted effector proteins possess a peptide domain with the core conserved motif, RxLR, located near the N-terminal secretion signal peptide. In the Ph. infestans effector Avr3a, RxLR and an additional EER motif are essential for translocation into host cells during infection. Avr3a is recognized in the host cytoplasm by the R3a resistance protein. We have exploited this cytoplasmic recognition to report on replacement of the RxLR-EER of Avr3a with the equivalent sequences from the intracellular effectors ATR1NdWsB and ATR13 from the related oomycete pathogen, Hyaloperonospora parasitica, and the host targeting signal from the Pl. falciparum virulence protein PfHRPII. Introduction of these chimeric transgenes into Ph. infestans and subsequent virulence testing on potato plants expressing R3a demonstrated the alternative motifs to be functional in translocating Avr3a inside plant cells. These results suggest common mechanisms for protein translocation in both malaria and oomycete pathosystems.


Fungal Genetics and Biology | 2003

Profiling and quantifying differential gene transcription in Phytophthora infestans prior to and during the early stages of potato infection.

Anna O. Avrova; Eduard Venter; Paul R. J. Birch; Stephen C. Whisson

Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P. infestans genes were found to exhibit significant differential expression between developmental transitions, with approximately (1)/(10) being stage-specific and most changes occurring during zoosporogenesis. Quantitative reverse-transcription polymerase chain reaction assays confirmed the robustness of the array results and showed that similar patterns of differential expression were obtained regardless of whether hyphae were from laboratory media or infected tomato. Differentially expressed genes encode potential cellular regulators, especially protein kinases; metabolic enzymes such as those involved in glycolysis, gluconeogenesis, or the biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural proteins, including predicted flagellar proteins; and pathogenicity factors, including cell-wall-degrading enzymes, RXLR effector proteins, and enzymes protecting against plant defense responses. Curiously, some stage-specific transcripts do not appear to encode functional proteins. These findings reveal many new aspects of oomycete biology, as well as potential targets for crop protection chemicals.


Molecular Plant-microbe Interactions | 1999

A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans.

Anna O. Avrova; Helen E. Stewart; Walter De Jong; Jacqueline Heilbronn; Gary D. Lyon; Paul R. J. Birch

Phytophthora infestans, the causal agent of potato and tomato late blight, produces several different cell types prior to and during the early stages of potato infection. All of these cell types can be easily generated and studied in the absence of the host plant and so form the basis for developmental stage-specific gene discovery. We have used amplified fragment length polymorphism (AFLP)-based mRNA fingerprinting (cDNA-AFLP) to identify 64 transcripts that appeared to be up-regulated in germinating cysts but not in vegetative mycelium. These transcripts included representatives of most major classes of heat shock proteins: hsp60, hsp70, hsp90, and hsp100. Real-time RT-PCR was used to quantify the expression of 18 transcripts originating from germinating cysts, relative to the constitutively expressed actB gene, in vegetative mycelium, germinating cysts, and at three time-points post-inoculation of potato cultivar Bintje (15, 48, and 72h). All of the transcripts were up-regulated in germinating cysts, and 12, including hsp70, hsp80-2, and hsp90, were found also to be up-regulated in planta. This is the first report of the application of real-time RT-PCR to the relative quantification of plant pathogen gene expression during the early stages of infection.

Collaboration


Dive into the Anna O. Avrova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura J. Grenville-Briggs

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Ian K. Toth

James Hutton Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingo Hein

James Hutton Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge