Anna Paola Marcello
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Paola Marcello.
Human Mutation | 2009
Paola Bianchi; Elisa Fermo; Cristina Vercellati; Carla Boschetti; Wilma Barcellini; Anna Paola Marcello; Pier Giorgio Righetti; Alberto Zanella
Congenital dyserythropoietic anemia type II (CDAII) is an autosomal recessive disease characterized by ineffective erythropoiesis, hemolysis, erythroblast morphological abnormalities, and hypoglycosylation of some red blood cell (RBC) membrane proteins. Recent studies indicated that CDAII is caused by a defect disturbing Golgi processing in erythroblasts. A linkage analysis located a candidate region on chromosome 20, termed the CDAN2 locus, in the majority of CDAII patients but the aberrant gene has not so far been elucidated. We used a proteomic‐genomic approach to identify SEC23B as the candidate gene for CDAII by matching the recently published data on the cytoplasmic proteome of human RBCs with the chromosomic localization of CDAN2 locus. Sequencing analysis of SEC23B gene in 13 CDAII patients from 10 families revealed 12 different mutations: six missense (c.40C>T, c.325G>A, c.1043A>C, c.1489C>T, c.1808C>T, and c.2101C>T), two frameshift (c.428_428delAinsCG and c.1821delT), one splicing (c.689+1G>A), and three nonsense (c.568C>T, c.649C>T, and c.1660C>T). Mutations c.40C>T and c.325G>A were detected in unrelated patients. SEC23B is a member of the Sec23/Sec24 family, a component of the COPII coat protein complex involved in protein transport through membrane vesicles. Abnormalities in this gene are likely to disturb endoplasmic reticulum (ER)‐to‐Golgi trafficking, affecting different glycosylation pathways and ultimately accounting for the cellular phenotype observed in CDAII. Hum Mutat 30:1–7, 2009.
Haematologica | 2008
Mariagabriella Mariani; Wilma Barcellini; Cristina Vercellati; Anna Paola Marcello; Elisa Fermo; Paola Pedotti; Carla Boschetti; Alberto Zanella
The molecular basis of hereditary spherocytosis is highly heterogeneous, involving the genes encoding for spectrin, ankyrin, band 3 and protein 4.2. The findings of this retrospective study show that splenectomy corrected anemia in patients with all molecular subtypes of hereditary spherocytosis. Thus, the definition of the red cell membrane defect in hereditary spherocytosis has no major clinical implications, but may be useful for a differential diagnosis from other hematologic disorders that mimic this hemolytic anemia. See related perspective article on page 1283. Background Hereditary spherocytosis is a very heterogeneous form of hemolytic anemia. The aim of this study was to relate the type of molecular defect with clinical and hematologic features and response to splenectomy using information from a large database of patients. Design and Methods Data from 300 consecutive patients with hereditary spherocytosis, grouped according to the results of sodium dodecyl sulphate-polyacrylamide gel electrophoresis, were analyzed and the sensitivity of red cell osmotic fragility tests was compared in various subsets of patients. Results Band 3 and spectrin deficiencies were the most common protein abnormalities (54% and 31%, respectively); 11% of cases were not classified by the electrophoretic analysis. Spectrin deficiency was more frequently diagnosed in childhood and band 3 deficiency in adulthood. Hemoglobin concentration was slightly lower, spherocyte number and hemolysis markers higher in spectrin deficiency than in band 3 deficiency. The sensitivity of the osmotic fragility tests ranged from 48% to 95%, and was independent of the type and amount of the membrane defect. The association of the acidified glycerol lysis test and the NaCl test on incubated blood reached a sensitivity of 99%. Splenectomy corrected the anemia in patients with all subtypes of hereditary spherocytosis although spectrin-deficient patients still showed increased reticulocyte numbers and levels of unconjugated bilirubin. Splenectomy allowed the identification of the membrane defect in all the previously unclassified patients, most of whom had spectrin and/or ankyrin deficiency. Conclusions The definition of the red cell membrane defect in hereditary spherocytosis has no major clinical implications, but may be useful for a differential diagnosis from other hematologic disorders that mimic this hemolytic anemia.
Haematologica | 2012
Paola Bianchi; Elisa Fermo; Cristina Vercellati; Anna Paola Marcello; Laura Porretti; Agostino Cortelezzi; Wilma Barcellini; Alberto Zanella
Background The laboratory diagnosis of hereditary spherocytosis commonly relies on NaCl-based or glycerol-based red cell osmotic fragility tests; more recently, an assay directly targeting the hereditary spherocytosis molecular defect (eosin-5′-maleimide-binding test) has been proposed. None of the available tests identifies all cases of hereditary spherocytosis. Design and Methods We compared the performances of the eosin-5′-maleimide-binding test, NaCl-osmotic fragility studies on fresh and incubated blood, the glycerol lysis test, the acidified glycerol lysis test, and the Pink test on a series of 150 patients with hereditary spherocytosis grouped according to clinical phenotype and the defective protein, with the final aim of finding the combination of tests associated with the highest diagnostic power, even in the mildest cases of hereditary spherocytosis. Results The eosin-5′-maleimide-binding test had a sensitivity of 93% and a specificity of 98% for detecting hereditary spherocytosis: the sensitivity was independent of the type and amount of molecular defect and of the clinical phenotype. The acidified glycerol lysis test and Pink test showed comparable sensitivity (95% and 91%). The sensitivity of NaCl osmotic fragility tests, commonly considered the gold standard for the diagnosis of hereditary spherocytosis, was 68% on fresh blood and 81% on incubated blood, and further decreased in compensated cases (53% and 64%, respectively). The combination of the eosin-5′-maleimide-binding test and acidified glycerol lysis test enabled all patients with hereditary spherocytosis to be identified. The eosin-5′-maleimide-binding test showed the greatest disease specificity. Conclusions Each type of test fails to diagnose some cases of hereditary spherocytosis. The association of an eosin-5′-maleimide-binding test and an acidified glycerol lysis test enabled identification of all patients with hereditary spherocytosis in this series and, therefore, represents a currently effective diagnostic strategy for hereditary spherocytosis including mild/compensated cases.
Blood Transfusion | 2011
Wilma Barcellini; Paola Bianchi; Elisa Fermo; Francesca Guia Imperiali; Anna Paola Marcello; Cristina Vercellati; Anna Zaninoni; Alberto Zanella
The plasma membrane of the erythrocyte accounts for all of this cell’s antigenic, transport, and mechanical characteristics, particularly its ability to undergo large passive deformations during repeated passage through the narrow capillaries of the microvasculature, throughout its 120-day life span. The determinant of normal membrane cohesion is the system of “vertical” linkages between the phospholipid bilayer and membrane skeleton, formed by the interactions of the cytoplasmic domains of various membrane proteins with the spectrin-based skeletal network. Band 3 and Rh-associated glycoprotein (RhAG) provide such links by interacting with ankyrin, which in turn binds to β-spectrin. Protein 4.2 binds to both band 3 and ankyrin and can regulate the avidity of the interaction between band 3 and ankyrin. Glycophorin C, band 3, XK, Rh, and Duffy all bind to protein 4.1R, the third member of the ternary junctional complex with β-spectrin and actin1–2. Red cell membrane disorders are inherited diseases due to mutations in various membrane or skeletal proteins, resulting in decreased red cell deformability, reduced life span and premature removal of the erythrocytes from the circulation. The red cell membrane disorders include hereditary spherocytosis, hereditary elliptocytosis, hereditary ovalocytosis and hereditary stomatocytosis.
Blood Cells Molecules and Diseases | 2008
Elisa Fermo; Paola Bianchi; Cristina Vercellati; Anna Paola Marcello; Massimo Garatti; Ornella Marangoni; Wilma Barcellini; Alberto Zanella
We report the clinical and molecular characteristics of 6 new patients with recessive hereditary methemoglobinemia due to cytochrome b5 reductase deficiency. One patient was affected by Type-II disease with cyanosis and severe progressive neurological dysfunction, whereas the others displayed the benign Type-I phenotype. Methemoglobin levels ranged from 12.1% to 26.2% and cytochrome b5 reductase activity from 0 to 10% of normal. Eight different mutations were detected among the twelve mutated alleles identified, one splicing mutation, two stop codon, and five missense. Two mutations c. 82 C>T(Gln27STOP) and c. 136 C>T(Arg45Trp) are new. Prenatal diagnosis was performed in the family with Type-II disease.
Scientific Reports | 2017
Elisa Fermo; Anna Bogdanova; Polina Petkova-Kirova; Anna Zaninoni; Anna Paola Marcello; Asya Makhro; Pascal Hänggi; Laura Hertz; Jens Danielczok; Cristina Vercellati; Nadia Mirra; Alberto Zanella; Agostino Cortelezzi; Wilma Barcellini; Lars Kaestner; Paola Bianchi
The Gardos channel is a Ca2+ sensitive, K+ selective channel present in several tissues including RBCs, where it is involved in cell volume regulation. Recently, mutations at two different aminoacid residues in KCNN4 have been reported in patients with hereditary xerocytosis. We identified by whole exome sequencing a new family with two members affected by chronic hemolytic anemia carrying mutation R352H in the KCNN4 gene. No additional mutations in genes encoding for RBCs cytoskeletal, membrane or channel proteins were detected. We performed functional studies on patients’ RBCs to evaluate the effects of R352H mutation on the cellular properties and eventually on the clinical phenotype. Gardos channel hyperactivation was demonstrated in circulating erythrocytes and erythroblasts differentiated ex-vivo from peripheral CD34+ cells. Pathological alterations in the function of multiple ion transport systems were observed, suggesting the presence of compensatory effects ultimately preventing cellular dehydration in patient’s RBCs; moreover, flow cytometry and confocal fluorescence live-cell imaging showed Ca2+ overload in the RBCs of both patients and hypersensitivity of Ca2+ uptake by RBCs to swelling. Altogether these findings suggest that the ‘Gardos channelopathy’ is a complex pathology, to some extent different from the common hereditary xerocytosis.
Molecular Genetics and Metabolism | 2012
Elisa Fermo; Paola Bianchi; Laurent R. Chiarelli; Maristella Maggi; Giuseppa Maria Luana Mandarà; Cristina Vercellati; Anna Paola Marcello; Wilma Barcellini; Agostino Cortelezzi; Giovanna Valentini; Alberto Zanella
Phosphoglycerate kinase (PGK) is a key glycolytic enzyme that catalyzes the reversible phosphotransfer reaction from 1,3-bisphosphoglycerate to MgADP, to form 3-phosphoglycerate and MgATP. Two isozymes encoded by distinct genes are present in humans: PGK-1, located on Xq-13.3, encodes a ubiquitous protein of 417 amino acids, whereas PGK-2 is testis-specific. PGK1 deficiency is characterized by mild to severe hemolytic anemia, neurological dysfunctions and myopathy; patients rarely exhibit all three clinical features. Nearly 40 cases have been reported, 27 of them characterized at DNA or protein level, and 20 different mutations were described. Here we report the first Italian case of PGK deficiency characterized at a molecular and biochemical level. The patient presented during infancy with hemolytic anemia, increased CPK values, and respiratory distress; the study of red blood cell enzymes showed a drastic reduction in PGK activity. In adulthood he displayed mild hemolytic anemia, mental retardation and severe myopathy. PGK-1 gene sequencing revealed the new missense mutation c.1112T>A (p.Ile371Lys). The mutation was not found among 100 normal alleles, and even if located in the third to the last nucleotide of exon 9, it did not alter mRNA splicing. The p.Ile371Lys mutation falls in a conserved region of the enzyme, near the nucleotide binding site. The mutant enzyme shows reduced catalytic rates toward both substrates (apparent k(cat) values, 12-fold lower than wild-type) and a decreased affinity toward MgATP (apparent K(m), 6-fold higher than wild-type). Moreover, it lost half of activity after nearly 9-min incubation at 45°C, a temperature that did not affect the wild-type enzyme (t(1/2)>1 h). The possible compensatory expression of PGK2 isoenzyme was investigated in the proband and in the heterozygote healthy sisters, and found to be absent. Therefore, the highly perturbed catalytic properties of the new variant p.Ile371Lys, combined with protein instability, account for the PGK deficiency found in the patient and correlate with the clinical expression of the disease.
European Journal of Haematology | 2010
Elisa Fermo; Paola Bianchi; Cristina Vercellati; David C. Rees; Anna Paola Marcello; Wilma Barcellini; Alberto Zanella
We report the clinical, haematological and molecular characteristics of two triose phosphate isomerase deficient patients affected by haemolytic anaemia and neuromuscular impairment. The sequence of complete TPI gene showed the presence of two previously undescribed mutations: c.722 T>C (Phe240Ser) and c.28 insG; each of the two unrelated patients showed the new mutation in compound heterozygosity with the most common variant Glu104Asp. The association of Glu104Asp with c.28 insG resulted in a very severe clinical pattern.
Transfusion | 2015
Anna Zaninoni; Cristina Vercellati; Francesca Guia Imperiali; Anna Paola Marcello; Bruno Fattizzo; Elisa Fermo; Paola Bianchi; Claudia Grossi; Alessandra Cattaneo; Agostino Cortelezzi; Alberto Zanella; Wilma Barcellini
Hereditary spherocytosis (HS) is a congenital hemolytic anemia caused by defects in red blood cell (RBC) membrane proteins leading to premature RBC clearance in the spleen. The presence of RBC autoantibodies has never been extensively investigated in HS.
Frontiers in Physiology | 2018
Anna Zaninoni; Elisa Fermo; Cristina Vercellati; Dario Consonni; Anna Paola Marcello; Alberto Zanella; Agostino Cortelezzi; Wilma Barcellini; Paola Bianchi
Chronic hemolytic anemias are a group of heterogeneous diseases mainly due to abnormalities of red cell (RBC) membrane and metabolism. The more common RBC membrane disorders, classified on the basis of blood smear morphology, are hereditary spherocytosis (HS), elliptocytosis, and hereditary stomatocytoses (HSt). Among RBC enzymopathies, the most frequent is pyruvate kinase (PK) deficiency, followed by glucose-6-phosphate isomerase, pyrimidine 5′ nucleotidase P5′N, and other rare enzymes defects. Because of the rarity and heterogeneity of these diseases, diagnosis may be often challenging despite the availability of a variety of laboratory tests. The ektacytometer laser-assisted optical rotational cell analyser (LoRRca MaxSis), able to assess the RBC deformability in osmotic gradient conditions (Osmoscan analysis), is a useful diagnostic tool for RBC membrane disorders and in particular for the identification of hereditary stomatocytosis. Few data are so far available in other hemolytic anemias. We evaluated the diagnostic power of LoRRca MaxSis in a large series of 140 patients affected by RBC membrane disorders, 37 by enzymopathies, and 16 by congenital diserythropoietic anemia type II. Moreover, nine patients with paroxysmal nocturnal hemoglobinuria (PNH) were also investigated. All the hereditary spherocytoses, regardless the biochemical defect, showed altered Osmoscan curves, with a decreased Elongation Index (EI) max and right shifted Omin; hereditary elliptocytosis (HE) displayed a trapezoidal curve and decreased EImax. Dehydrated hereditary stomatocytosis (DHSt) caused by PIEZO1 mutations was characterized by left-shifted curve, whereas KCNN4 mutations were associated with a normal curve. Congenital diserythropoietic anemia type II and RBC enzymopathies had Osmoscan curve within the normal range except for glucosephosphate isomerase (GPI) deficient cases who displayed an enlarged curve associated with significantly increased Ohyper, offering a new diagnostic tool for this rare enzyme defect. The Osmoscan analysis performed by LoRRca MaxSis represents a useful and feasible first step screening test for specialized centers involved in the diagnosis of hemolytic anemias. However, the results should be interpreted by caution because different factors (i.e., splenectomy or coexistent diseases) may interfere with the analysis; additional tests or molecular investigations are therefore needed to confirm the diagnosis.
Collaboration
Dive into the Anna Paola Marcello's collaboration.
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputs