Anna Perols
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Perols.
PLOS ONE | 2013
Joanna Strand; Hadis Honarvar; Anna Perols; Anna Orlova; Ram Kumar Selvaraju; Amelie Eriksson Karlström; Vladimir Tolmachev
Affibody molecules are a class of small (7 kDa) non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET) would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide 68Ga (T1/2 = 67.6 min). Earlier studies have demonstrated that the chemical nature of chelators has a substantial influence on the biodistribution properties of Affibody molecules. To determine an optimal labeling approach, the macrocyclic chelators 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA) and 1-(1,3-carboxypropyl)-1,4,7- triazacyclononane-4,7-diacetic acid (NODAGA) were conjugated to the N-terminus of the synthetic Affibody molecule ZHER2:S1 targeting HER2. Affibody molecules were labeled with 68Ga, and their binding specificity and cellular processing were evaluated. The biodistribution of 68Ga-DOTA-ZHER2:S1, 68Ga-NOTA-ZHER2:S1 and 68Ga-NODAGA-ZHER2:S1, as well as that of their 111In-labeled counterparts, was evaluated in BALB/C nu/nu mice bearing HER2-expressing SKOV3 xenografts. The tumor uptake for 68Ga-DOTA-ZHER2:S1 (17.9±0.7%IA/g) was significantly higher than for both 68Ga-NODAGA-ZHER2:S1 (16.13±0.67%IA/g) and 68Ga-NOTA-ZHER2:S1 (13±3%IA/g) at 2 h after injection. 68Ga-NODAGA-ZHER2:S1 had the highest tumor-to-blood ratio (60±10) in comparison with both 68Ga-DOTA-ZHER2:S1 (28±4) and 68Ga-NOTA-ZHER2:S1 (42±11). The tumor-to-liver ratio was also higher for 68Ga-NODAGA-ZHER2:S1 (7±2) than the DOTA and NOTA conjugates (5.5±0.6 vs.3.3±0.6). The influence of chelator on the biodistribution and targeting properties was less pronounced for 68Ga than for 111In. The results of this study demonstrate that macrocyclic chelators conjugated to the N-terminus have a substantial influence on the biodistribution of HER2-targeting Affibody molecules labeled with 68Ga.This can be utilized to enhance the imaging contrast of PET imaging using Affibody molecules and improve the sensitivity of molecular imaging. The study demonstrated an appreciable difference of chelator influence for 68Ga and 111In.
Bioconjugate Chemistry | 2012
Anna Perols; Hadis Honarvar; Joanna Strand; Ramkumar Selvaraju; Anna Orlova; Amelie Eriksson Karlström; Vladimir Tolmachev
Affibody molecules are a class of affinity proteins. Their small size (7 kDa) in combination with the high (subnanomolar) affinity for a number of cancer-associated molecular targets makes them suitable for molecular imaging. Earlier studies demonstrated that the selection of radionuclide and chelator may substantially influence the tumor-targeting properties of affibody molecules. Moreover, the placement of chelators for labeling of affibody molecules with (99m)Tc at different positions in affibody molecules influenced both blood clearance rate and uptake in healthy tissues. This introduces an opportunity to improve the contrast of affibody-mediated imaging. In this comparative study, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to the synthetic affibody molecule Z(HER2:S1) at three different positions: DOTA-A1-Z(HER2:S1) (N-terminus), DOTA-K58-Z(HER2:S1) (C-terminus), and DOTA-K50-Z(HER2:S1) (middle of helix 3). The affinity for HER2 differed slightly among the variants and the K(D) values were determined to be 133 pM, 107 pM and 94 pM for DOTA-A1-Z(HER2:S1), DOTA-K50-Z(HER2:S1), and DOTA-K58-Z(HER2:S1), respectively. Z(HER2:S1)-K50-DOTA showed a slightly lower melting point (57 °C) compared to DOTA-A1-Z(HER2:S1) (64 °C) and DOTA-K58-Z(HER2:S1) (62 °C), but all variants showed good refolding properties after heat treatment. All conjugates were successfully labeled with (111)In resulting in a radiochemical yield of 99% with preserved binding capacity. In vitro specificity studies using SKOV-3 and LS174T cell lines showed that the binding of the radiolabeled compounds was HER2 receptor-mediated, which also was verified in vivo using BALB/C nu/nu mice with LS174T and Ramos lymphoma xenografts. The three conjugates all showed specific uptake in LS174T xenografts in nude mice, where DOTA-A1-Z(HER2:S1)and DOTA-K58-Z(HER2:S1) showed the highest uptake. Overall, DOTA-K58-Z(HER2:S1) provided the highest tumor-to-blood ratio, which is important for a high-contrast imaging. In conclusion, the positioning of the DOTA chelator influences the cellular processing and the biodistribution pattern of radiolabeled affibody molecules, creating preconditions for imaging optimization.
The Journal of Nuclear Medicine | 2016
Mohamed Altai; Anna Perols; Maria Tsourma; Bogdan Mitran; Hadis Honarvar; Marc S. Robillard; Raffaella Rossin; Wolter ten Hoeve; Mark Lubberink; Anna Orlova; Amelie Eriksson Karlström; Vladimir Tolmachev
Affibody molecules constitute a new class of probes for radionuclide tumor targeting. The small size of Affibody molecules is favorable for rapid localization in tumors and clearance from circulation. However, high renal reabsorption of Affibody molecules prevents the use of residualizing radiometals, including several promising low-energy β- and α-emitters, for radionuclide therapy. We tested a hypothesis that Affibody-based pretargeting mediated by a bioorthogonal interaction between trans-cyclooctene (TCO) and tetrazine would provide higher accumulation of radiometals in tumor xenografts than in the kidneys. Methods: TCO was conjugated to the anti–human epidermal growth factor receptor 2 (HER2) Affibody molecule Z2395. DOTA-tetrazine was labeled with 111In and 177Lu. In vitro pretargeting was studied in HER2-expressing SKOV-3 and BT474 cell lines. In vivo studies were performed on BALB/C nu/nu mice bearing SKOV-3 xenografts. Results: 125I-Z2395-TCO bound specifically to HER2-expressing cells in vitro with an affinity of 45 ± 16 pM. 111In-tetrazine bound specifically and selectively to Z2395-TCO pretreated cells. In vivo studies demonstrated HER2-specific 125I-Z2395-TCO accumulation in xenografts. TCO-mediated 111In-tetrazine localization was shown in tumors, when the radiolabeled tracer was injected 4 h after an injection of Z2395-TCO. At 1 h after injection, the tumor uptake of 111In-tetrazine and177Lu-tetrazine was approximately 2-fold higher than the renal uptake. Pretargeting provided more than a 56-fold reduction of renal uptake of 111In in comparison with direct targeting. Conclusion: The feasibility of Affibody-based bioorthogonal chemistry–mediated pretargeting was demonstrated. The use of pretargeting provides a substantial reduction of radiometal accumulation in kidneys, creating preconditions for palliative radionuclide therapy.
European Journal of Nuclear Medicine and Molecular Imaging | 2011
Mohamed Altai; Anna Perols; Amelie Eriksson Karlström; Mattias Sandström; Frederic Boschetti; Anna Orlova; Vladimir Tolmachev
Radionuclide molecular imaging has the potential to improve cancer treatment by selection of patients for targeted therapy. Affibody molecules are a class of small (7 kDa) high-affinity targeting proteins with appreciable potential as molecular imaging probes. The NOTA chelator forms stable complexes with a number of radionuclides suitable for SPECT or PET imaging. A maleimidoethylmonoamide NOTA (MMA-NOTA) has been prepared for site-specific labeling of Affibody molecules having a unique C-terminal cysteine. Coupling of the MMA-NOTA to the anti-HER2 Affibody molecule Z(HER2:2395) resulted in a conjugate with an affinity (dissociation constant) to HER2 of 72 pM. Labeling of [MMA-NOTA-Cys(61)]-Z(HER2:2395) with (111)In gave a yield of >95% after 20 min at 60 °C. In vitro cell tests demonstrated specific binding of [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) to HER2-expressing cell lines. In mice bearing prostate cancer DU-145 xenografts, the tumor uptake of [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) was 8.2 ± 0.9% IA/g and the tumor-to-blood ratio was 31 ± 1 (4 h postinjection). DU-145 xenografts were clearly visualized by a gamma camera. Direct in vivo comparison of [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) and [(111)In-MMA-DOTA-Cys(61)]-Z(HER2:2395) demonstrated that both conjugates provided equal radioactivity uptake in tumors, but the tumor-to-organ ratios were better for [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) due to more efficient clearance from normal tissues. In conclusion, coupling of MMA-NOTA to a cysteine-containing Affibody molecule resulted in a site-specifically labeled conjugate, which retains high affinity, can be efficiently labeled, and allows for high-contrast imaging.
Bioconjugate Chemistry | 2014
Anna Perols; Amelie Eriksson Karlström
Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Fc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the ε-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG1, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with two photoactivable probes (Z5BBA32BPA) was also synthesized with the aim of targeting a wider panel of antibody subclasses and species. This new reagent could efficiently couple to all antibody subclasses that were targeted by the single benzophenone-labeled Z domain variants, with conjugation efficiencies of 26-41%.
Nuclear Medicine and Biology | 2012
Mohamed Altai; Anna Perols; Amelie Eriksson Karlström; Mattias Sandström; Frederic Boschetti; Anna Orlova; Vladimir Tolmachev
INTRODUCTION Affibody molecules have demonstrated potential for radionuclide molecular imaging. The aim of this study was to synthesize and evaluate a maleimido derivative of the 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA) for site-specific labeling of anti-HER2 Affibody molecule. METHODS The maleimidoethylmonoamide NODAGA (MMA-NODAGA) was synthesized and conjugated to Z(HER2:2395) Affibody molecule having a C-terminal cysteine. Labeling efficiency, binding specificity to and cell internalization by HER2-expressing cells of [(111)In-MMA-NODAGA-Cys(61)]-Z(HER2:2395) were studied. Biodistribution of [(111)In-MMA-NODAGA-Cys(61)]-Z(HER2:2395) and [(111)In-MMA-DOTA-Cys(61)]-Z(HER2:2395) was compared in mice. RESULTS The affinity of [MMA-NODAGA-Cys(61)]-Z(HER2:2395) binding to HER2 was 67 pM. The (111)In-labeling yield was 99.6%±0.5% after 30 min at 60°C. [(111)In-MMA-NODAGA-Cys(61)]-Z(HER2:2395) bound specifically to HER2-expressing cells in vitro and in vivo. Tumor uptake of [(111)In-MMA-NODAGA-Cys(61)]-Z(HER2:2395) in mice bearing DU-145 xenografts (4.7%±0.8% ID/g) was lower than uptake of [(111)In-MMA-DOTA-Cys(61)]-Z(HER2:2395) (7.5%±1.6% ID/g). However, tumor-to-organ ratios were higher for [(111)In-MMA-NODAGA-Cys(61)]-Z(HER2:2395) due to higher clearance rate from normal tissues. CONCLUSIONS MMA-NODAGA is a promising chelator for site-specific labeling of targeting proteins containing unpaired cysteine. Appreciable influence of chelators on targeting properties of Affibody molecules was demonstrated.
ACS Nano | 2014
Daniel Rönnlund; Lei Xu; Anna Perols; Amelie Eriksson Karlström; Gert Auer; Jerker Widengren
Fluorescence nanoscopy provides means to discern the finer details of protein localization and interaction in cells by offering an order of magnitude higher resolution than conventional optical imaging techniques. However, these super resolution techniques put higher demands on the optical system and the fluorescent probes, making multicolor fluorescence nanoscopy a challenging task. Here we present a new and simple procedure, which exploits the photostability and excitation spectra of dyes to increase the number of simultaneous recordable targets in STED nanoscopy. We use this procedure to demonstrate four-color STED imaging of platelets with ≤40 nm resolution and low crosstalk. Platelets can selectively store, sequester, and release a multitude of different proteins, in a manner specific for different physiological and disease states. By applying multicolor nanoscopy to study platelets, we can achieve spatial mapping of the protein organization with a high resolution for multiple proteins at the same time and in the same cell. This provides a means to identify specific platelet activation states for diagnostic purposes and to understand the underlying protein storage and release mechanisms. We studied the organization of the pro- and antiangiogenic proteins VEGF and PF-4, together with fibrinogen and filamentous actin, and found distinct features in their respective protein localization. Further, colocalization analysis revealed only minor overlap between the proteins VEGF and PF-4 indicating that they have separate storage and release mechanisms, corresponding well with their opposite roles as pro- and antiangiogenic proteins, respectively.
Molecular Imaging | 2014
Hadis Honarvar; Joanna Strand; Anna Perols; Anna Orlova; Ram Kumar Selvaraju; Amelie Eriksson Karlström; Vladimir Tolmachev
Affibody molecules, small (7 kDa) scaffold proteins, are a promising class of probes for radionuclide molecular imaging. Radiolabeling of Affibody molecules with the positron-emitting nuclide 68Ga would permit the use of positron emission tomography (PET), providing better resolution, sensitivity, and quantification accuracy than single-photon emission computed tomography (SPECT). The synthetic anti-HER2 ZHER2:S1 Affibody molecule was conjugated with DOTA at the N-terminus, in the middle of helix 3, or at the C-terminus. The biodistribution of 68Ga- and 111In-labeled Affibody molecules was directly compared in NMRI nu/nu mice bearing SKOV3 xenografts. The position of the chelator strongly influenced the biodistribution of the tracers, and the influence was more pronounced for 68Ga-labeled Affibody molecules than for the 111In-labeled counterparts. The best 68Ga-labeled variant was 68Ga-[DOTA-A1]-ZHER2:S1 which provided a tumor uptake of 13 ± 1 %ID/g and a tumor to blood ratio of 39 ± 12 at 2 hours after injection. 111In-[DOTA-A1]-ZHER2:S1 and 111In-[DOTA-K58]-ZHER2:S1 were equally good at this time point, providing a tumor uptake of 15 to 16 %ID/g and a tumor to blood ratio in the range of 60 to 80. In conclusion, the selection of the best position for a chelator in Affibody molecules can be used for optimization of their imaging properties. This may be important for the development of Affibody-based and other protein-based imaging probes.Affibody molecules, small (7 kDa) scaffold proteins, are a promising class of probes for radionuclide molecular imaging. Radiolabeling of Affibody molecules with the positron-emitting nuclide 68Ga would permit the use of positron emission tomography (PET), providing better resolution, sensitivity, and quantification accuracy than single-photon emission computed tomography (SPECT). The synthetic anti-HER2 ZHER2:S1 Affibody molecule was conjugated with DOTA at the N-terminus, in the middle of helix 3, or at the C-terminus. The biodistribution of 68Ga- and 111In-labeled Affibody molecules was directly compared in NMRI nu/nu mice bearing SKOV3 xenografts. The position of the chelator strongly influenced the biodistribution of the tracers, and the influence was more pronounced for 68Ga-labeled Affibody molecules than for the 111In-labeled counterparts. The best 68Ga-labeled variant was 68Ga-[DOTA-A1]-ZHER2:S1, which provided a tumor uptake of 13 ± 1 %ID/g and a tumor to blood ratio of 39 ± 12 at 2 hours after injection. 111In-[DOTA-A1]-ZHER2:S1 and 111In-[DOTA-K58]-ZHER2:S1 were equally good at this time point, providing a tumor uptake of 15 to 16 %ID/g and a tumor to blood ratio in the range of 60 to 80. In conclusion, the selection of the best position for a chelator in Affibody molecules can be used for optimization of their imaging properties. This may be important for the development of Affibody-based and other protein-based imaging probes.
Biosensors and Bioelectronics | 2016
Apurba Dev; Josef Horak; Andreas Kaiser; Xichen Yuan; Anna Perols; Per Björk; Amelie Eriksson Karlström; Pascal Kleimann; Jan Linnros
We present a simple and inexpensive method for label-free detection of biomolecules. The method monitors the changes in streaming current in a fused silica capillary as target biomolecules bind to immobilized receptors on the inner surface of the capillary. To validate the concept, we show detection and time response of different protein-ligand and protein-protein systems: biotin-avidin and biotin-streptavidin, barstar-dibarnase and Z domain-immunoglobulin G (IgG). We show that specific binding of these biomolecules can be reliably monitored using a very simple setup. Using sequential injections of various proteins at a diverse concentration range and as well as diluted human serum we further investigate the capacity of the proposed technique to perform specific target detection from a complex sample. We also investigate the time for the signal to reach equilibrium and its dependence on analyte concentration and demonstrate that the current setup can be used to detect biomolecules at a concentration as low as 100pM without requiring any advanced device fabrication procedures. Finally, an analytical model based on diffusion theory has been presented to explain the dependence of the saturation time on the analyte concentration and capillary dimensions and how reducing length and inner diameter of the capillary is predicted to give faster detection and in practice also lower limit of detection.
ChemBioChem | 2015
Anna Perols; Melina Arcos Famme; Amelie Eriksson Karlström
Antibodies are extensively used in research, diagnostics, and therapy, and for many applications the antibodies need to be labeled. Labeling is typically performed by using amine‐reactive probes that target surface‐exposed lysine residues, resulting in heterogeneously labeled antibodies. An alternative labeling strategy is based on the immunoglobulin G (IgG)‐binding protein domain Z, which binds to the Fc region of IgG. Introducing the photoactivable amino acid benzoylphenylalanine (BPA) into the Z domain makes it possible for a covalent bond to be be formed between the Z domain and the antibody on UV irradiation, to produce a site‐specifically labeled product. Z32BPA was synthesized by solid‐phase peptide synthesis and further functionalized to give alkyne‐Z32BPA and azide‐Z32BPA for CuI‐catalyzed cycloaddition, as well as DBCO‐Z32BPA for Cu‐free strain‐promoted cycloaddition. The Z32BPA variants were conjugated to the human IgG1 antibody trastuzumab and site‐specifically labeled with biotin or fluorescein. The fluorescently labeled trastuzumab showed specific staining of the membranes of HER2‐expressing cells in immunofluorescence microscopy.