Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna R. Panchenko is active.

Publication


Featured researches published by Anna R. Panchenko.


PLOS Computational Biology | 2007

Deciphering protein-protein interactions. Part I. Experimental techniques and databases.

Benjamin A. Shoemaker; Anna R. Panchenko

Proteins interact with each other in a highly specific manner, and protein interactions play a key role in many cellular processes; in particular, the distortion of protein interfaces may lead to the development of many diseases. To understand the mechanisms of protein recognition at the molecular level and to unravel the global picture of protein interactions in the cell, different experimental techniques have been developed. Some methods characterize individual protein interactions while others are advanced for screening interactions on a genome-wide scale. In this review we describe different experimental techniques of protein interaction identification together with various databases which attempt to classify the large array of experimental data. We discuss the main promises and pitfalls of different methods and present several approaches to verify and validate the diverse experimental data produced by high-throughput techniques.


PLOS Computational Biology | 2007

Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners.

Benjamin A. Shoemaker; Anna R. Panchenko

Recent advances in high-throughput experimental methods for the identification of protein interactions have resulted in a large amount of diverse data that are somewhat incomplete and contradictory. As valuable as they are, such experimental approaches studying protein interactomes have certain limitations that can be complemented by the computational methods for predicting protein interactions. In this review we describe different approaches to predict protein interaction partners as well as highlight recent achievements in the prediction of specific domains mediating protein-protein interactions. We discuss the applicability of computational methods to different types of prediction problems and point out limitations common to all of them.


Nucleic Acids Research | 1999

MMDB: Entrez's 3D-structure database

Yanli Wang; John B. Anderson; Jie Chen; Lewis Y. Geer; Siqian He; David I. Hurwitz; Cynthia A. Liebert; Thomas Madej; Gabriele H. Marchler; Anna R. Panchenko; Benjamin A. Shoemaker; James S. Song; Paul A. Thiessen; Roxanne A. Yamashita; Stephen H. Bryant

Three-dimensional structures are now known within many protein families and it is quite likely, in searching a sequence database, that one will encounter a homolog with known structure. The goal of Entrezs 3D-structure database is to make this information, and the functional annotation it can provide, easily accessible to molecular biologists. To this end Entrezs search engine provides three powerful features. (i) Sequence and structure neighbors; one may select all sequences similar to one of interest, for example, and link to any known 3D structures. (ii) Links between databases; one may search by term matching in MEDLINE, for example, and link to 3D structures reported in these articles. (iii) Sequence and structure visualization; identifying a homolog with known structure, one may view molecular-graphic and alignment displays, to infer approximate 3D structure. In this article we focus on two features of Entrezs Molecular Modeling Database (MMDB) not described previously: links from individual biopolymer chains within 3D structures to a systematic taxonomy of organisms represented in molecular databases, and links from individual chains (and compact 3D domains within them) to structure neighbors, other chains (and 3D domains) with similar 3D structure. MMDB may be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Structure.


Protein Science | 2004

Prediction of functional sites by analysis of sequence and structure conservation.

Anna R. Panchenko; Fyodor A. Kondrashov; Stephen H. Bryant

We present a method for prediction of functional sites in a set of aligned protein sequences. The method selects sites which are both well conserved and clustered together in space, as inferred from the 3D structures of proteins included in the alignment. We tested the method using 86 alignments from the NCBI CDD database, where the sites of experimentally determined ligand and/or macromolecular interactions are annotated. In agreement with earlier investigations, we found that functional site predictions are most successful when overall background sequence conservation is low, such that sites under evolutionary constraint become apparent. In addition, we found that averaging of conservation values across spatially clustered sites improves predictions under certain conditions: that is, when overall conservation is relatively high and when the site in question involves a large macromolecular binding interface. Under these conditions it is better to look for clusters of conserved sites than to look for particular conserved sites.


Structure | 2011

Phosphorylation in Protein-Protein Binding: Effect on Stability and Function

Hafumi Nishi; Kosuke Hashimoto; Anna R. Panchenko

Posttranslational modifications offer a dynamic way to regulate protein activity, subcellular localization, and stability. Here we estimate the effect of phosphorylation on protein binding and function for different types of complexes from human proteome. We find that phosphorylation sites tend to be located on binding interfaces in heterooligomeric and weak transient homooligomeric complexes. Analysis of molecular mechanisms of phosphorylation shows that phosphorylation may modulate the strength of interactions directly on interfaces and that binding hotspots tend to be phosphorylated in heterooligomers. Although the majority of complexes do not show significant estimated stability differences upon phosphorylation or dephosphorylation, for about one-third of all complexes it causes relatively large changes in binding energy. We discuss the cases where phosphorylation mediates the complex formation and regulates the function. We show that phosphorylation sites are more likely to be evolutionary conserved than other interfacial residues.


BMC Evolutionary Biology | 2002

The relationship of protein conservation and sequence length

David J. Lipman; Alexander Souvorov; Eugene V. Koonin; Anna R. Panchenko; Tatiana Tatusova

BackgroundIn general, the length of a protein sequence is determined by its function and the wide variance in the lengths of an organisms proteins reflects the diversity of specific functional roles for these proteins. However, additional evolutionary forces that affect the length of a protein may be revealed by studying the length distributions of proteins evolving under weaker functional constraints.ResultsWe performed sequence comparisons to distinguish highly conserved and poorly conserved proteins from the bacterium Escherichia coli, the archaeon Archaeoglobus fulgidus, and the eukaryotes Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. For all organisms studied, the conserved and nonconserved proteins have strikingly different length distributions. The conserved proteins are, on average, longer than the poorly conserved ones, and the length distributions for the poorly conserved proteins have a relatively narrow peak, in contrast to the conserved proteins whose lengths spread over a wider range of values. For the two prokaryotes studied, the poorly conserved proteins approximate the minimal length distribution expected for a diverse range of structural folds.ConclusionsThere is a relationship between protein conservation and sequence length. For all the organisms studied, there seems to be a significant evolutionary trend favoring shorter proteins in the absence of other, more specific functional constraints.


Journal of Molecular Biology | 2013

Molecular mechanisms of disease-causing missense mutations.

Shannon Stefl; Hafumi Nishi; Marharyta Petukh; Anna R. Panchenko; Emil Alexov

Genetic variations resulting in a change of amino acid sequence can have a dramatic effect on stability, hydrogen bond network, conformational dynamics, activity and many other physiologically important properties of proteins. The substitutions of only one residue in a protein sequence, so-called missense mutations, can be related to many pathological conditions and may influence susceptibility to disease and drug treatment. The plausible effects of missense mutations range from affecting the macromolecular stability to perturbing macromolecular interactions and cellular localization. Here we review the individual cases and genome-wide studies that illustrate the association between missense mutations and diseases. In addition, we emphasize that the molecular mechanisms of effects of mutations should be revealed in order to understand the disease origin. Finally, we report the current state-of-the-art methodologies that predict the effects of mutations on protein stability, the hydrogen bond network, pH dependence, conformational dynamics and protein function.


PLOS Computational Biology | 2009

Intrinsic Disorder in Protein Interactions: Insights From a Comprehensive Structural Analysis

Jessica H. Fong; Benjamin A. Shoemaker; Sergiy O. Garbuzynskiy; Michail Yu. Lobanov; Oxana V. Galzitskaya; Anna R. Panchenko

We perform a large-scale study of intrinsically disordered regions in proteins and protein complexes using a non-redundant set of hundreds of different protein complexes. In accordance with the conventional view that folding and binding are coupled, in many of our cases the disorder-to-order transition occurs upon complex formation and can be localized to binding interfaces. Moreover, analysis of disorder in protein complexes depicts a significant fraction of intrinsically disordered regions, with up to one third of all residues being disordered. We find that the disorder in homodimers, especially in symmetrical homodimers, is significantly higher than in heterodimers and offer an explanation for this interesting phenomenon. We argue that the mechanisms of regulation of binding specificity through disordered regions in complexes can be as common as for unbound monomeric proteins. The fascinating diversity of roles of disordered regions in various biological processes and protein oligomeric forms shown in our study may be a subject of future endeavors in this area.


Nucleic Acids Research | 2012

MMDB: 3D structures and macromolecular interactions

Thomas Madej; Kenneth J. Addess; Jessica H. Fong; Lewis Y. Geer; Renata C. Geer; Christopher J. Lanczycki; Chunlei Liu; Shennan Lu; Anna R. Panchenko; Jie Chen; Paul A. Thiessen; Yanli Wang; Dachuan Zhang; Stephen H. Bryant

Close to 60% of protein sequences tracked in comprehensive databases can be mapped to a known three-dimensional (3D) structure by standard sequence similarity searches. Potentially, a great deal can be learned about proteins or protein families of interest from considering 3D structure, and to this day 3D structure data may remain an underutilized resource. Here we present enhancements in the Molecular Modeling Database (MMDB) and its data presentation, specifically pertaining to biologically relevant complexes and molecular interactions. MMDB is tightly integrated with NCBIs Entrez search and retrieval system, and mirrors the contents of the Protein Data Bank. It links protein 3D structure data with sequence data, sequence classification resources and PubChem, a repository of small-molecule chemical structures and their biological activities, facilitating access to 3D structure data not only for structural biologists, but also for molecular biologists and chemists. MMDB provides a complete set of detailed and pre-computed structural alignments obtained with the VAST algorithm, and provides visualization tools for 3D structure and structure/sequence alignment via the molecular graphics viewer Cn3D. MMDB can be accessed at http://www.ncbi.nlm.nih.gov/structure.


Protein Science | 2006

Finding biologically relevant protein domain interactions: Conserved binding mode analysis

Benjamin A. Shoemaker; Anna R. Panchenko; Stephen H. Bryant

Proteins evolved through the shuffling of functional domains, and therefore, the same domain can be found in different proteins and species. Interactions between such conserved domains often involve specific, well‐determined binding surfaces reflecting their important biological role in a cell. To find biologically relevant interactions we developed a method of systematically comparing and classifying protein domain interactions from the structural data. As a result, a set of conserved binding modes (CBMs) was created using the atomic detail of structure alignment data and the protein domain classification of the Conserved Domain Database. A conserved binding mode is inferred when different members of interacting domain families dock in the same way, such that their structural complexes superimpose well. Such domain interactions with recurring structural themes have greater significance to be biologically relevant, unlike spurious crystal packing interactions. Consequently, this study gives lower and upper bounds on the number of different types of interacting domain pairs in the structure database on the order of 1000–2000. We use CBMs to create domain interaction networks, which highlight functionally significant connections by avoiding many infrequent links between highly connected nodes. The CBMs also constitute a library of docking templates that may be used in molecular modeling to infer the characteristics of an unknown binding surface, just as conserved domains may be used to infer the structure of an unknown protein. The methods ability to sort through and classify large numbers of putative interacting domain pairs is demonstrated on the oligomeric interactions of globins.

Collaboration


Dive into the Anna R. Panchenko's collaboration.

Top Co-Authors

Avatar

Stephen H. Bryant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. Shoemaker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas Madej

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Goncearenco

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Landsman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hafumi Nishi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jessica H. Fong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Minghui Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kosuke Hashimoto

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge