Anna R. Spickler
Iowa State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna R. Spickler.
Avian Pathology | 2008
Anna R. Spickler; Darrell W. Trampel; James A. Roth
Some avian influenza viruses may be transmissible to mammals by ingestion. Cats and dogs have been infected by H5N1 avian influenza viruses when they ate raw poultry, and two human H5N1 infections were linked to the ingestion of uncooked duck blood. The possibility of zoonotic influenza from exposure to raw poultry products raises concerns about flocks with unrecognized infections. The present review examines the onset of virus shedding and the development of clinical signs for a variety of avian influenza viruses in chickens. In experimentally infected birds, some high-pathogenicity avian influenza (HPAI) and low-pathogenicity avian influenza (LPAI) viruses can occur in faeces and respiratory secretions as early as 1 to 2 days after inoculation. Some HPAI viruses have also been found in meat 1 day after inoculation and in eggs after 3 days. There is no evidence that LPAI viruses can be found in meat, and the risk of their occurrence in eggs is poorly understood. Studies in experimentally infected birds suggest that clinical signs usually develop within a few days of virus shedding; however, some models and outbreak descriptions suggest that clinical signs may not become evident for a week or more in some H5 or H7 HPAI-infected flocks. During this time, avian influenza viruses might be found in poultry products. LPAI viruses can be shed in asymptomatically infected or minimally affected flocks, but these viruses are unlikely to cause significant human disease.
Vaccine | 2015
Matthew R. Sandbulte; Anna R. Spickler; Pamela K. Zaabel; James A. Roth
Influenza A virus in swine (IAV-S) is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.
Animal Health Research Reviews | 2010
James A. Roth; Anna R. Spickler
Abstract Concerns about possible adverse effects from annual vaccination have prompted the reanalysis of vaccine protocols for cats and dogs. In the last decade, several veterinary advisory groups have published protocols that recommend extended revaccination intervals for certain ‘core’ vaccines. In addition, practicing veterinarians have been asked to consider vaccination as an individualized medical procedure, based on an analysis of risks and benefits for each vaccine in an individual animal. The calls for extended revaccination intervals prompted considerable debate in USA and internationally. Areas of concern include the amount of evidence to support prolonged immunity from various vaccines, the risk of poor responses in individual animals and the possible effects on population immunity. This review examines how the duration of immunity (DOI) to a vaccine is established in animals and humans. It reviews factors that can affect the DOI in an individual animal, including the types of immune defenses stimulated by the pathogen, and the vaccine, host factors such as age and the level of exposure to the pathogen. In addition, it examines DOI studies that were published for canine and feline core vaccines.
Journal of Veterinary Internal Medicine | 2003
Anna R. Spickler; James A. Roth
Emerging and exotic diseases of animals | 2006
Jane Galyon; Anna R. Spickler; James A. Roth
Archive | 2015
Anna R. Spickler; James A. Roth
Archive | 2015
Anna R. Spickler; James A. Roth
Archive | 2014
James A. Roth; Anna R. Spickler
Archive | 2014
James A. Roth; Amber Stumbaugh; Anna R. Spickler; Danelle A. Bickett-Weddle
Archive | 2012
Anna R. Spickler; James A. Roth