Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Rieckmann is active.

Publication


Featured researches published by Anna Rieckmann.


NeuroImage | 2011

Neural correlates of training-related working-memory gains in old age

Yvonne Brehmer; Anna Rieckmann; Martin Bellander; Helena Westerberg; Håkan Fischer; Lars Bäckman

Working memory (WM) functioning declines in old age. Due to its impact on many higher-order cognitive functions, investigating whether training can modify WM performance has recently been of great interest. We examined the relationship between behavioral performance and neural activity following five weeks of intensive WM training in 23 healthy older adults (M=63.7 years). 12 participants received adaptive training (i.e. individually adjusted task difficulty to bring individuals to their performance maximum), whereas the others served as active controls (i.e. fixed low-level practice). Brain activity was measured before and after training, using fMRI, while subjects performed a WM task under two difficulty conditions. Although there were no training-related changes in WM during scanning, neocortical brain activity decreased post training and these decreases were larger in the adaptive training group than in the controls under high WM load. This pattern suggests intervention-related increases in neural efficiency. Further, there were disproportionate gains in the adaptive training group in trained as well as in non-trained (i.e. attention, episodic memory) tasks assessed outside the scanner, indicating the efficacy of the training regimen. Critically, the degree of training-related changes in brain activity (i.e. neocortical decreases and subcortical increases) was related to the maximum gain score achieved during the intervention period. This relationship suggests that the decreased activity, but also specific activity increases, observed were functionally relevant.


NeuroImage | 2010

Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: Relations to performance

Anna Rieckmann; Håkan Fischer; Lars Bäckman

The striatum and connected cortical areas have been implicated in sequence learning (SL) tasks, in which performance increments are gradual and learning typically occurs in the absence of awareness. It has recently been shown that increasing striatal activation during SL may be accompanied by decreasing activation in the medial temporal lobe (MTL) across time, but the specific contribution of the MTL to SL remains unclear. In the current age-comparative fMRI study, we show that gradual SL in the serial reaction time task is associated with activation increases in the striatum and activation decreases in the MTL across time in younger adults. However, in older adults, SL is positively related to activation increases in both the striatum and the MTL. The results are discussed in terms of the functional role of the MTL in SL, and offer a novel explanation of the fact that SL is little affected in aging.


Neurobiology of Aging | 2011

Dopamine D1 receptors and age differences in brain activation during working memory

Lars Bäckman; Sari Karlsson; Håkan Fischer; Per Karlsson; Yvonne Brehmer; Anna Rieckmann; Stuart W. S. MacDonald; Lars Farde; Lars Nyberg

In an fMRI study, 20 younger and 20 healthy older adults were scanned while performing a spatial working-memory task under two levels of load. On a separate occasion, the same subjects underwent PET measurements using the radioligand [(11)C] SCH23390 to determine dopamine D(1) receptor binding potential (BP) in caudate nucleus and dorsolateral prefrontal cortex (DLPFC). The fMRI study revealed a significant load modulation of brain activity (higher load>lower load) in frontal and parietal regions for younger, but not older, adults. The PET measurements showed marked age-related reductions of D(1) BP in caudate and DLPFC. Statistical control of caudate and DLPFC D(1) binding eliminated the age-related reduction in load-dependent BOLD signal in left frontal cortex, and attenuated greatly the reduction in right frontal and left parietal cortex. These findings suggest that age-related alterations in dopaminergic neurotransmission may contribute to underrecruitment of task-relevant brain regions during working-memory performance in old age.


Neuropsychology Review | 2009

Implicit Learning in Aging: Extant Patterns and New Directions

Anna Rieckmann; Lars Bäckman

Research suggests that the striatum plays an important role in implicit learning (IL). The striatum exhibits marked age-related morphological and neurochemical losses. Yet, behavioral studies suggest that IL is generally well preserved in old age, and that age-related differences emerge only when highly complex IL tasks are used. In this review, we integrate behavioral and neuroimaging evidence on IL in aging. We suggest that relative stability of IL in old age may reflect neural reorganization that compensates for age-related losses in striatal functions. Specifically, there may be an age-related increase in reliance on extrastriatal regions (e.g., medial-temporal, frontal) during IL. This reorganization of function may be beneficial under less taxing performance conditions, but not when task demands become more challenging.


The Journal of Neuroscience | 2012

Aging-Related Increases in Behavioral Variability: Relations to Losses of Dopamine D1 Receptors

Stuart W. S. MacDonald; Sari Karlsson; Anna Rieckmann; Lars Nyberg; Lars Bäckman

Intraindividual variability (IIV) reflects within-person changes in performance, such as trial-by-trial fluctuations on a reaction-time (RT) task. The neural underpinnings of IIV remain largely unknown. The neurotransmitter dopamine (DA) is of particular interest here, as human populations that exhibit DA alterations, such as the elderly, attention deficit hyperactivity disorder children, persons with schizophrenia, and Parkinson patients, also show increased behavioral IIV. We examined links between DA D1 binding potential (BP) in multiple brain regions and IIV for the control and interference conditions of the Multi-Source Interference Task (MSIT), tapping the cingulo-fronto-parietal attention network. Participants were 18 young and 20 healthy old adults. PET and the radioligand [11C]SCH23390 were used to determine D1 BP. The intraindividual standard deviation (ISD) was computed across successful latency trials of the MSIT conditions, independent of mean RT differences due to age, trial, and condition. Increasing ISDs were associated with increasing age and diminished D1 binding in several brain regions (anterior cingulate gyrus, dorsolateral prefrontal cortex, and parietal cortex) for the interference, but not control, condition. Analyses of partial associations indicate that the association between age and IIV in the interference condition was linked to D1 receptor losses in task-relevant brain regions. These findings suggest that dysfunctional DA modulation may contribute to increased variability in cognitive performance among older adults.


Cerebral Cortex | 2016

Multiple Brain Markers are Linked to Age-Related Variation in Cognition

Trey Hedden; Aaron P. Schultz; Anna Rieckmann; Elizabeth C. Mormino; Keith Johnson; Reisa A. Sperling; Randy L. Buckner

Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65-90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70-80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health.


The Journal of Neuroscience | 2011

Caudate Dopamine D1 Receptor Density Is Associated with Individual Differences in Frontoparietal Connectivity during Working Memory

Anna Rieckmann; Sari Karlsson; Håkan Fischer; Lars Bäckman

We assess the relationship of age-related losses in striatal D1 receptor densities to age-related reductions in functional connectivity between spatially distinct cortical regions in healthy human participants. Previous neuroimaging studies have reported age-related differences in functional connectivity of the frontoparietal working memory network and the default mode network during task performance. We used functional magnetic resonance imaging and seed-based connectivity (right dorsolateral and medial prefrontal cortex) to extend these findings: Anterior–posterior connectivity of both these functional networks was reduced in older (65–75 years, n = 18) compared with younger (20–30 years, n = 19) adults, whereas bilateral connectivity in prefrontal cortex was increased in older adults. Positron emission tomography with the D1 receptor ligand [11C]SCH23390 was used to assess caudate D1 receptor density in the same sample. Older adults showed significantly reduced caudate D1 receptor density compared to the younger adults. Of key interest, partial correlations showed that individual differences in caudate D1 receptor density were positively associated with individual differences in dorsolateral prefrontal connectivity to right parietal cortex (BA40) and negatively with medial prefrontal connectivity to right parietal cortex (BA40 and postcentral gyrus), after controlling for age. We found no correlation of caudate D1 receptor density with anterior–posterior coupling within the default mode network or with bilateral frontal connectivity. These results are consistent with animal work that has identified a role for caudate D1 receptors in mediating information transfer between prefrontal areas and parietal cortex.


Biological Psychiatry | 2010

Simulating Neurocognitive Aging: Effects of a Dopaminergic Antagonist on Brain Activity During Working Memory

Håkan Fischer; Lars Nyberg; Sari Karlsson; Per Karlsson; Yvonne Brehmer; Anna Rieckmann; Stuart W. S. MacDonald; Lars Farde; Lars Bäckman

BACKGROUND Previous correlational studies have indirectly linked dysfunctional dopaminergic neurotransmission to age-related cognitive deficits and associated reductions in task-induced functional brain activity. METHODS We used an experimental-pharmacological functional magnetic resonance imaging (fMRI) approach to more directly examine the role of dopamine in neurocognitive aging. Twenty younger and 20 healthy older adults were included. During fMRI scanning, a spatial working memory (SWM) task was administered under two conditions, varying in cognitive load. Positron emission tomography measurements with the D1 receptor antagonist [(11)C]SCH23390 confirmed that a given experimental dose of unlabeled solution occupied 50% of D1 receptors in younger adults. RESULTS An age-related reduction in SWM performance was observed, and fMRI data revealed that, relative to younger adults under placebo conditions, elderly persons under-recruited load-sensitive fronto-parietal regions during SWM. Critically, in younger adults, the D1 antagonist resulted in a similar reduction in SWM performance and fMRI response. CONCLUSIONS These results suggest that depletion of dopamine, whether ontogenetically or pharmacologically, results in decreased SWM performance as well as reduced load-dependent modulation of the blood oxygen level dependent signal in fronto-parietal regions, possibly by decreasing the signal-to-noise ratio in relevant neural networks.


Cerebral Cortex | 2011

Dopamine D1 Receptor Associations within and between Dopaminergic Pathways in Younger and Elderly Adults: Links to Cognitive Performance

Anna Rieckmann; Sari Karlsson; Per Karlsson; Yvonne Brehmer; Håkan Fischer; Lars Farde; Lars Nyberg; Lars Bäckman

Age-related dopamine (DA) losses have been extensively demonstrated for the D2 receptor subtype. Comparatively little is known about adult age changes regarding D1 receptors. In this study, we demonstrate marked age-related D1 receptor losses in striatal, limbic, and cortical areas using positron emission tomography and the radioligand [(11)C]SCH23390 in humans. Interregional correlations of binding potential (BP) values were high for areas within DA pathways in younger and elderly adults alike. Furthermore, interregional correlations in D1 BP between DA pathways were uniformly high in younger adults, indicating that D1 receptor densities in striatal, limbic, and cortical areas are not regulated independently, despite dopaminergic innervation from different midbrain areas. For elderly adults, between-pathway correlations of D1 receptor densities were preserved only between mesolimbic and mesocortical areas, whereas striatal BPs were weakly related to those in limbic and neocortical regions. Importantly, weak between-pathway correlations in elderly adults were found only for the slower half of the sample when BP was estimated during a cognitive interference task. These results suggest that D1 receptor densities in different pathways are not regulated independently in younger adults, but segregate in older age, and that this segregation of D1 receptor systems may be related to age-related cognitive slowing.


Current Opinion in Neurobiology | 2014

Neuromodulation and aging: implications of aging neuronal gain control on cognition

Shu-Chen Li; Anna Rieckmann

The efficacy of various transmitter systems declines with advancing age. Of particular interest, various pre-synaptic and post-synaptic components of the dopaminergic system change across the human lifespan; impairments in these components play important roles in cognitive deficits commonly observed in the elderly. Here, we review evidence from recent multimodal neuroimaging, pharmacological and genetic studies that have provided new insights for the associations among dopamine functions, aging, functional brain activations and behavioral performance across key cognitive functions, ranging from working memory and episodic memory to goal-directed learning and decision making. Specifically, we discuss these empirical findings in the context of an established neurocomputational theory of aging neuronal gain control. We also highlight gaps in the current understanding of dopamine neuromodulation and aging brain functions and suggest avenues for future research.

Collaboration


Dive into the Anna Rieckmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge