Anna Robotham
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Robotham.
Journal of Bacteriology | 2011
Sandy Y. M. Ng; John Wu; Divya B. Nair; Susan M. Logan; Anna Robotham; Luc Tessier; John F. Kelly; Kaoru Uchida; Shin-Ichi Aizawa; Ken F. Jarrell
The structure of pili from the archaeon Methanococcus maripaludis is unlike that of any bacterial pili. However, genetic analysis of the genes involved in the formation of these pili has been lacking until this study. Pili were isolated from a nonflagellated (ΔflaK) mutant and shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to consist primarily of subunits with an apparent molecular mass of 17 kDa. In-frame deletions were created in three genes, MMP0233, MMP0236, and MMP0237, which encode proteins with bacterial type IV pilin-like signal peptides previously identified by in silico methodology as likely candidates for pilus structural proteins. Deletion of MMP0236 or MMP0237 resulted in mutant cells completely devoid of pili on the cell surface, while deletion of the third pilin-like gene, MMP0233, resulted in cells greatly reduced in the number of pili on the surface. Complementation with the deleted gene in each case returned the cells to a piliated state. Surprisingly, mass spectrometry analysis of purified pili identified the major structural pilin as another type IV pilin-like protein, MMP1685, whose gene is located outside the first pilus locus. This protein was found to be glycosylated with an N-linked branched pentasaccharide glycan. Deletion and complementation analysis confirmed that MMP1685 is required for piliation.
mAbs | 2015
Céline Raymond; Anna Robotham; Maureen Spearman; Michael Butler; John F. Kelly; Yves Durocher
The presence of α2,6-sialic acids on the Fc N-glycan provides anti-inflammatory properties to the IgGs through a mechanism that remains unclear. Fc-sialylated IgGs are rare in humans as well as in industrial host cell lines such as Chinese hamster ovary (CHO) cells. Facilitated access to well-characterized α2,6-sialylated IgGs would help elucidate the mechanism of this intriguing IgGs effector function. This study presents a method for the efficient Fc glycan α2,6-sialylation of a wild-type and a F243A IgG1 mutant by transient co-expression with the human α2,6-sialyltransferase 1 (ST6) and β1,4-galactosyltransferase 1 (GT) in CHO cells. Overexpression of ST6 alone only had a moderate effect on the glycoprofiles, whereas GT alone greatly enhanced Fc-galactosylation, but not sialylation. Overexpression of both GT and ST6 was necessary to obtain a glycoprofile dominated by α2,6-sialylated glycans in both antibodies. The wild-type was composed of the G2FS(6)1 glycan (38%) with remaining unsialylated glycans, while the mutant glycoprofile was essentially composed of G2FS(6)1 (25%), G2FS(3,6)2 (16%) and G2FS(6,6)2 (37%). The α2,6-linked sialic acids represented over 85% of all sialic acids in both antibodies. We discuss how the limited sialylation level in the wild-type IgG1 expressed alone or with GT results from the glycan interaction with Fcs amino acid residues or from intrinsic galactosyl- and sialyl-transferases substrate specificities.
Journal of Bacteriology | 2012
Gareth M. Jones; John Wu; Yan Ding; Kaoru Uchida; Shin-Ichi Aizawa; Anna Robotham; Susan M. Logan; John F. Kelly; Ken F. Jarrell
N-linked glycosylation of protein is a posttranslational modification found in all three domains of life. The flagellin proteins of the archaeon Methanococcus maripaludis are known to be modified with an N-linked tetrasaccharide consisting of N-acetylgalactosamine (GalNAc), a diacetylated glucuronic acid (GlcNAc3NAc), an acetylated and acetamidino-modified mannuronic acid with a substituted threonine group (ManNAc3NAmA6Thr), and a novel terminal sugar residue [(5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose]. To identify genes involved in biosynthesis of the component sugars of this glycan, three genes, mmp1081, mmp1082, and mmp1083, were targeted for in-frame deletion, based on their annotation and proximity to glycosyltransferase genes known to be involved in assembly of the glycan. Mutants carrying a deletion in any of these three genes remained flagellated and motile. A strain with a deletion of mmp1081 had lower-molecular-mass flagellins in Western blots. Mass spectrometry of purified flagella revealed a truncated glycan with the terminal sugar absent and the threonine residue and the acetamidino group missing from the third sugar. No glycan modification was seen in either the Δmmp1082 or Δmmp1083 mutant grown in complex Balch III medium. However, a glycan identical to the Δmmp1081 glycan was observed when the Δmmp1082 or Δmmp1083 mutant was grown under ammonia-limited conditions. We hypothesize that MMP1082 generates ammonia and tunnels it through MMP1083 to MMP1081, which acts as the amidotransferase, modifying the third sugar residue of the M. maripaludis glycan with the acetamidino group.
Journal of Proteome Research | 2011
Jennifer J. Hill; Tammy-Lynn Tremblay; Ally Pen; Jie Li; Anna Robotham; Anne E.G. Lenferink; Edwin Wang; Maureen O’Connor-McCourt; John F. Kelly
Blood vessels in tumors frequently show abnormal characteristics, such as tortuous morphology or leakiness, but very little is known about protein expression in tumor vessels. In this study, we have used laser capture microdissection (LCM) to isolate microvessels from clinical samples of invasive ductal carcinoma (IDC), the most common form of malignant breast cancer, and from patient-matched adjacent nonmalignant tissue. This approach eliminates many of the problems associated with the heterogeneity of clinical tumor tissues by controlling for differences in protein expression between both individual patients and different cell types. Proteins from the microvessels were trypsinized and the resulting peptides were quantified by a label-free nanoLC-MS method. A total of 86 proteins were identified that are overexpressed in tumor vessels relative to vessels isolated from the adjacent nonmalignant tissue. These proteins include well-known breast tumor markers such as Periostin and Tenascin C but also proteins with lesser-known or emerging roles in breast cancer and tumor angiogenesis (i.e., Serpin H1, Clic-1, and Transgelin 2). We also identified 40 proteins that were relatively under-expressed in IDC tumor vessels, including several components of the basement membrane whose lower expression could be responsible for weakening tumor vessels. Lastly, we show that a subset of 29 proteins, derived from our list of differentially expressed proteins, is able to predict survival in three publicly available clinical breast cancer microarray data sets, which suggests that this subset of proteins likely plays a functional role in cancer progression and outcome.
Journal of Bacteriology | 2013
Yan Ding; Gareth M. Jones; Kaoru Uchida; Shin-Ichi Aizawa; Anna Robotham; Susan M. Logan; John F. Kelly; Ken F. Jarrell
N-glycosylation is a protein posttranslational modification found in all three domains of life. Many surface proteins in Archaea, including S-layer proteins, pilins, and archaellins (archaeal flagellins) are known to contain N-linked glycans. In Methanococcus maripaludis, the archaellins are modified at multiple sites with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is the unique sugar (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-l-erythro-hexos-5-ulo-1,5-pyranose. In this study, four genes--mmp1084, mmp1085, mmp1086, and mmp1087--were targeted to determine their potential involvement of the biosynthesis of the sugar components in the N-glycan, based on bioinformatics analysis and proximity to a number of genes which have been previously demonstrated to be involved in the N-glycosylation pathway. The genes mmp1084 to mmp1087 were shown to be cotranscribed, and in-frame deletions of each gene as well as a Δmmp1086Δmmp1087 double mutant were successfully generated. All mutants were archaellated and motile. Mass spectrometry examination of purified archaella revealed that in Δmmp1084 mutant cells, the threonine linked to the third sugar of the glycan was missing, indicating a putative threonine transferase function of MMP1084. Similar analysis of the archaella of the Δmmp1085 mutant cells demonstrated that the glycan lacked the methyl group at the C-5 position of the terminal sugar, indicating that MMP1085 is a methyltransferase involved in the biosynthesis of this unique sugar. Deletion of the remaining two genes, mmp1086 and mmp1087, either singularly or together, had no effect on the structure of the archaellin N-glycan. Because of their demonstrated involvement in the N-glycosylation pathway, we designated mmp1084 as aglU and mmp1085 as aglV.
Journal of Bacteriology | 2015
Sarah Siu; Anna Robotham; Susan M. Logan; John F. Kelly; Kaoru Uchida; Shin-Ichi Aizawa; Ken F. Jarrell
UNLABELLED Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. IMPORTANCE This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for archaellum assembly. Pilins are modified with a different N-glycan consisting of the archaellin tetrasaccharide but with an additional hexose attached to the linking sugar. Mass spectrometry analysis of the pili of one mutant strain provided insight into how this different glycan might ultimately be assembled. This study includes a rare example of an archaeal gene functionally replacing a bacterial gene in a complex sugar biosynthesis pathway.
Archive | 2012
Céline Raymond; Anna Robotham; John Kelly; Erika Lattová; Hélène Perreault; Yves Durocher
The first monoclonal antibody (Mab), developed against kidney transplant rejection, was accepted by the FDA in 1986 [1]. Today, Mabs are leading the biotherapeutics market as 28 have been approved in Europe and the USA, and hundreds are in clinical trials [2-4]. Most of them are of IgG1 subtype, developed for cancer and immune disease treatments. Mabs clinical efficacy not only relies on specific target binding provided by their variable region, but also on their ability to trigger defense mechanisms such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). These effector functions are mediated by the interaction between the antibody Fc fragment and the Fcγ-receptors expressed on immune cell surfaces or the molecules of the complement involved in ADCC and CDC respectively. In the last decade, these interactions were found to be highly dependent on on the presence and structure of the N-glycan linked to the Fc fragment [5, 6].
Glycoconjugate Journal | 2015
David C. Watson; Warren W. Wakarchuk; Christian Gervais; Yves Durocher; Anna Robotham; Steve M. Fernandes; Ronald L. Schnaar; N. Martin Young; Michel Gilbert
Legionaminic acids are analogs of sialic acid that occur in several bacteria. The most commonly occurring form is Leg5Ac7Ac, which differs from Neu5Ac only at the C7 (acetamido) and C9 (deoxy) positions. While these differences greatly reduce the susceptibility of Leg compounds to sialidases, several sialyltransferases have been identified that can use CMP-Leg5Ac7Ac as a donor (Watson et al. 2011). We report the successful modification with Leg5Ac7Ac of a glycolipid, GM1a, and two glycoproteins, interferon-α2b and α1-antitrypsin, by means of two mammalian sialyltransferases, namely porcine ST3Gal1 and human ST6Gal1. The Leg5Ac7Ac form of GD1a was not recognized by the myelin-associated glycoprotein (MAG, Siglec-4), confirming the importance of the glycerol moiety in the interaction of sialo-glycans with Siglecs.
Molecular Microbiology | 2017
Kurni Kurniyati; John F. Kelly; Evgeny Vinogradov; Anna Robotham; Youbing Tu; Juyu Wang; Jun Liu; Susan M. Logan; Chunhao Li
While protein glycosylation has been reported in several spirochetes including the syphilis bacterium Treponema pallidum and Lyme disease pathogen Borrelia burgdorferi, the pertinent glycan structures and their roles remain uncharacterized. Herein, a novel glycan with an unusual chemical composition and structure in the oral spirochete Treponema denticola, a keystone pathogen of periodontitis was reported. The identified glycan of mass 450.2 Da is composed of a monoacetylated nonulosonic acid (Non) with a novel extended N7 acyl modification, a 2‐methoxy‐4,5,6‐trihydroxy‐hexanoyl residue in which the Non has a pseudaminic acid configuration (L‐glycero‐L‐manno) and is β‐linked to serine or threonine residues. This novel glycan modifies the flagellin proteins (FlaBs) of T. denticola by O‐linkage at multiple sites near the D1 domain, a highly conserved region of bacterial flagellins that interact with Toll‐like receptor 5. Furthermore, mutagenesis studies demonstrate that the glycosylation plays an essential role in the flagellar assembly and motility of T. denticola. To our knowledge, this novel glycan and its unique modification sites have not been reported previously in any bacteria.
PLOS ONE | 2016
Warren W. Wakarchuk; Denis Brochu; Simon J. Foote; Anna Robotham; Hirak Saxena; Tamara Erak; John F. Kelly
The bacteria in the genus Cellulomonas are known for their ability to degrade plant cell wall biomass. Cellulomonas fimi ATCC 484 and C. flavigena ATCC 482 have been the subject of much research into secreted cellulases and hemicellulases. Recently the genome sequences of both C. fimi ATCC 484 and C. flavigena ATCC 482 were published, and a genome comparison has revealed their full spectrum of possible carbohydrate-active enzymes (CAZymes). Using mass spectrometry, we have compared the proteins secreted by C. fimi and C. flavigena during growth on the soluble cellulose substrate, carboxymethylcellulose (CMC), as well as a soluble xylan fraction. Many known C. fimi CAZymes were detected, which validated our analysis, as were a number of new CAZymes and other proteins that, though identified in the genome, have not previously been observed in the secretome of either organism. Our data also shows that many of these are co-expressed on growth of either CMC or xylan. This analysis provides a new perspective on Cellulomonas enzymes and provides many new CAZyme targets for characterization.