Anna Russo
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Russo.
Journal of Biotechnology | 2008
Anna Russo; L. Vettori; C. Felici; Grazia Fiaschi; Stefano Morini; Annita Toffanin
Inoculation with Azospirillum brasilense Sp245 exerts beneficial effects on micropropagated plants of Prunus cerasifera L. clone Mr.S 2/5, as seen in the results of a comparative analysis of inoculated and non-inoculated explants, during both the rooting and acclimatation phases. The presence of Azospirillum brasilense Sp245 increased root system, root hair biomass production and apical activity. Although the presence of the bacteria had a positive effect on rooting, the addition of indolebutyric acid (IBA) to Murashige and Skoog (MS) medium was seen as indispensable in order to promote the rooting of explants. Aside from the promotion of plant growth, A. brasilense Sp245 protects plants against pathogen attacks, such as Rhizoctonia spp., with a plant survival rate of nearly 100% vs. 0% as seen in the negative control. The biocontrol effect of A. brasilense Sp245 on the fungal rhizospheric community has been confirmed by denaturing gradient gel electrophoresis (DGGE) profiles of the rhizospheric microbial community. This study indicates that A. brasilense Sp245 could be employed as a tool in plant biotechnology.
Biology and Fertility of Soils | 2005
Anna Russo; C. Felici; Annita Toffanin; Monika Götz; Carlos Collados; J. M. Barea; Yvan Moënne-Loccoz; Kornelia Smalla; Jozef Vanderleyden; Marco Nuti
Plant growth-promoting rhizobacteria and arbuscular mycorrhizal (AM) fungi represent two main groups of beneficial microorganisms of the rhizosphere. The role of different strains of Azospirillum on AM fungi development was evaluated by measuring the percentage of AM colonisation of the root system in durum wheat and maize plants, grown under both greenhouse and field conditions. The effect of wild-type Azospirillum brasilense strain Sp245 and genetically modified (GM) derivatives overproducing indole-3-acetic acid was assessed at greenhouse level in (1) three different cultivars of durum wheat, in the presence of indigenous AM fungi and (2) maize plants artificially inoculated with Glomus mosseae and Glomus macrocarpum. In addition, the establishment of natural AM fungal symbiosis was evaluated using Azospirillum lipoferum CRT1 in maize plants at field level. Despite the stimulatory effect of the different Azospirillum inocula on root growth, no significant differences in AM colonisation were found, independently of the AM fungus involved, either in wheat or in maize plants. Similarly, GM A. brasilense, which strongly stimulates root development, did not affect AM formation. Although these results were obtained in conditions in which the mycorrhization rate was moderate (15–30%), overall considered they indicate that the use of wild-type or GM Azospirillum phytostimulators does not alter mycorrhization.
Journal of Industrial Microbiology & Biotechnology | 2001
Anna Russo; Marina Basaglia; Elisabetta Tola; Sergio Casella
Cells of Pseudomonas fluorescens F113 LacZY were encapsulated in alginate and their survival and ability to colonise sugar beet were evaluated. To assess survival, the formulation, composed of dry alginate microbeads of 300- to 700-μm diameter, was stored 1 year at 28±2 and 4±2°C and then tested against pathogenic fungi Pythium ultimum and Rhizoctonia solani in in vitro inhibition experiments. The same material was also used as inoculant for protection of sugar beet against Py. ultimum in microcosm experiments. The results obtained indicated that, although drying alginate beads resulted in a significant reduction of bacterial viability, the use of microbeads enabled a satisfactory level of root colonisation and protection, at least under microcosm conditions. The capability of the encapsulated cells to produce the antifungal metabolite 2,4-diacetylphloroglucinol (Phl) was not significantly affected by 12 months storage. Journal of Industrial Microbiology & Biotechnology (2001) 27, 337–342.
Journal of Plant Interactions | 2010
Lorenzo Vettori; Anna Russo; C. Felici; Grazia Fiaschi; Stefano Morini; Annita Toffanin
Abstract The effect of Azospirillum brasilense Sp245 on the micropropagation of three fruit rootstocks: Mr.S 2/5 plum (Prunus cerasifera×P. spinosa), GF 677 hybrid (Prunus persica×P. amigdalus), and MM 106 apple (Northen Spy×M1) was assessed. Rooted shoots were treated with 3×107 of Sp245 cells during transplantation from in vitro cultures to the acclimatization phase. After 60 days, growth parameters were positively affected by Sp245 inoculum. In the case of Mr.S 2/5, an increase in rootstock stem length and node number by 37% and 42%, respectively, compared to the control was noted. In the case of GF 677, the bacterial inoculum increased stem length and node number by up to the 75% and 65%, respectively, compared to the control. The inoculum did not exert on MM 106 for both parameters suggesting that the effects of Sp245 could depend on a specific clone-microbe association. In all cases, however, a higher vigor, consistent with a wider leaf area, was present in the inoculated plantlets demonstrating that the use of Azospirillum can significantly contribute to optimize plant performance during the phase of adaptation of plants to post-vitrum conditions.
Archive | 2012
Anna Russo; Gian Pietro Carrozza; Lorenzo Vettori; C. Felici; Fabrizio Cinelli; Annita Toffanin
Anna Russo1, Gian Pietro Carrozza4, Lorenzo Vettori2, Cristiana Felici4, Fabrizio Cinelli3 and Annita Toffanin4 1Department of Biological and Environmental Sciences and Technologies, University of Salento 2Department of Agriculture Biotechnology, University of Florence 3Department of Fruit Science and Plant Protection of Woody Species ‘G. Scaramuzzi’, University of Pisa 4Department of Crop Plant Biology, University of Pisa Italy
Microbiological Research | 2003
Anna Russo; Carlo Filippi; Riccardo Tombolini; Annita Toffanin; Stefano Bedini; Monica Agnolucci; Marco Nuti
Pseudomonas sp., (formerly reported as strain P12) which produces brown blotch disease symptoms on Pleurotus eryngii, has been identified as P. tolaasii based on its biochemical, physiological properties and 16S rDNA sequence analysis. This pathogen is able to infect basidiocarps when surface-inoculated on mushroom casing soil. However, infected basidiocarps develop the brown blotch disease symptoms when the pathogen concentration in the fruiting body tissues is higher than 10(4) cfu/g d.w. Using gfp-tagged cells and confocal laser scanning microscopy, it was possible to show that the pathogen has the ability to tightly attach to the hyphae of Pleurotus eryngii.
Biotechnology Progress | 2008
Anna Russo; Marina Basaglia; Sergio Casella; Marco Nuti
Antifungal activity against Rhizoctonia solani was achieved in vivo through the application of Pseudomonas fluorescens strain 134 encapsulated in sodium alginate beads of different sizes (0.5, 1, and 2 mm). The activity was compared to that obtainable with chemical treatments and bead‐derived liquid formulations. The latter was obtained by dissolving alginate beads of 1 and 0.5 mm in 1% Na‐citrate solution before application, without any significant (P < 0.05) reduction of bacterial numbers during the dissolution process. The dry bead formulations were applied next to the seeds in plant inoculation experiments, resulting in a reduction of disease symptoms, which were markedly reduced when the liquid formulation was applied. Moreover, the rate of disease symptoms related to liquid formulations from both 1 and 0.5 mm beads was comparable (near to 10%) to that of chemical treatment. Pseudomonas fluorescens strain 134 delivered as both dry and liquid formulations was able to colonize cotton root at a population density of about 108 CFU/g fresh root, 15 days after sowing.
Archive | 2003
Marco Nuti; Anna Russo; Annita Toffanin; Sergio Casella; Viviana Corich; Andrea Squartini; Alessio Giacomini; U. Peruch; Marina Basaglia
Journal of Biotechnology | 2012
Lorenzo Vettori; A. Missaglia; C. Felici; Anna Russo; I. Tamantini; G.P.C. Carrozza; F. Cinelli; Annita Toffanin
Journal of Biotechnology | 2010
Lorenzo Vettori; C. Felici; Anna Russo; Stefano Morini; Stephen P. Cummings; Annita Toffanin