Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna S. Gukovskaya is active.

Publication


Featured researches published by Anna S. Gukovskaya.


Journal of Clinical Investigation | 1997

Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis.

Anna S. Gukovskaya; Ilya Gukovsky; Vjekoslav Zaninovic; Moon Song; Diana Sandoval; Sofiya Gukovsky; Stephen J. Pandol

The aim of this study was to determine whether tumor necrosis factor-alpha (TNFalpha) and receptors for TNFalpha are expressed in the exocrine pancreas, and whether pancreatic acinar cells release and respond to TNFalpha. Reverse transcription PCR, immunoprecipitation, and Western blot analysis demonstrated the presence of TNFalpha and 55- and 75-kD TNFalpha receptors in pancreas from control rats, rats with experimental pancreatitis induced by supramaximal doses of cerulein, and in isolated pancreatic acini. Immunohistochemistry showed TNFalpha presence in pancreatic acinar cells. ELISA and bioassay measurements of TNFalpha indicated its release from pancreatic acinar cells during incubation in primary culture. Acinar cells responded to TNFalpha. TNFalpha potentiated NF-kappaB translocation into the nucleus and stimulated apoptosis in isolated acini while not affecting LDH release. In vivo studies demonstrated that neutralization of TNFalpha with an antibody produced a mild improvement in the parameters of cerulein-induced pancreatitis. However, TNFalpha neutralization greatly inhibited apoptosis in a modification of the cerulein model of pancreatitis which is associated with a high percentage of apoptotic cell death. The results indicate that pancreatic acinar cells produce, release, and respond to TNFalpha. This cytokine regulates apoptosis in both isolated pancreatic acini and experimental pancreatitis.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1998

Early NF-κB activation is associated with hormone-induced pancreatitis

Ilya Gukovsky; Anna S. Gukovskaya; T.A. Blinman; Vjekoslav Zaninovic; Stephen J. Pandol

Inflammation and cell death are critical to pathogenesis of acute pancreatitis. Here we show that transcription factor nuclear factor-κB (NF-κB), which regulates these processes, is activated and plays a role in rat cerulein pancreatitis. NF-κB was strongly activated in the pancreas within 30 min of cerulein infusion; a second phase of NF-κB activation was prominent at 3-6 h. This biphasic kinetics could result from observed transient degradation of the inhibitory protein IκBα and slower but sustained degradation of IκBβ. The hormone also caused NF-κB translocation and IκB degradation in vitro in dispersed pancreatic acini. Both p65/p50 and p50/p50, but not c-Rel, NF-κB complexes were manifest in pancreatitis and in isolated acini. Coinfusion of CCK JMV-180, which abolishes pancreatitis, prevented cerulein-induced NF-κB activation. The second but not early phase of NF-κB activation was inhibited by a neutralizing tumor necrosis factor-α antibody. Antioxidant N-acetylcysteine (NAC) blocked NF-κB activation and significantly improved parameters of pancreatitis. In particular, NAC inhibited intrapancreatic trypsin activation and mRNA expression of cytokines interleukin-6 and KC, which were dramatically induced by cerulein. The results suggest that NF-κB activation is an important early event that may contribute to inflammatory and cell death responses in acute pancreatitis.


Gastroenterology | 1996

The role of neutrophils and platelet-activating factor in mediating experimental pancreatitis

D Sandoval; Anna S. Gukovskaya; P Reavey; S Gukovsky; A Sisk; P Braquet; Sj Pandol; S Poucell-Hatton

BACKGROUND & AIMS Pancreatitis is characterized by inflammation and death of acinar cells. Death can occur by either necrosis or apoptosis. The initial injury may cause expression of cytokines that mediate activation and infiltration of neutrophils. The aim of this study was to assess the effect of neutrophils and platelet-activating factor (PAF) in cell death responses. METHODS The effects of neutrophil depletion with antineutrophil serum (ANS) and a PAF antagonist (BN52021) were measured in the cerulein model of pancreatitis. Rats received a 6-hour intravenous infusion of cerulein either alone or after treatment with ANS, BN52021, or both. RESULTS Cerulein-induced pancreatitis was characterized by neutrophilic infiltration, vacuolization of acinar cells, and foci of necrosis. Treatment with ANS and BN52021 prevented the inflammatory response caused by cerulein and decreased the cell damage. Treatment with ANS increased apoptosis in cerulein-infused animals. When BN52021 was added, apoptosis was abolished. The measurement of PAF in pancreatic tissue showed a ninefold increase with cerulein treatment alone and a 14-fold increase in cerulein-infused, neutrophil-depleted animals. CONCLUSIONS The results indicate that cerulein stimulates pancreatic production of PAF. PAF mediates both apoptosis and neutrophil chemotaxis in the pancreas. Neutrophils in turn may convert acinar cells undergoing apoptosis into necrotic cells.


Journal of Biological Chemistry | 2006

Cell Death in Pancreatitis CASPASES PROTECT FROM NECROTIZING PANCREATITIS

Olga A. Mareninova; Kai-Feng Sung; Peggy Hong; Aurelia Lugea; Stephen J. Pandol; Ilya Gukovsky; Anna S. Gukovskaya

Mechanisms of cell death in pancreatitis remain unknown. Parenchymal necrosis is a major complication of pancreatitis; also, the severity of experimental pancreatitis correlates directly with necrosis and inversely with apoptosis. Thus, shifting death responses from necrosis to apoptosis may have a therapeutic value. To determine cell death pathways in pancreatitis and the possibility of necrosis/apoptosis switch, we utilized the differences between the rat model of cerulein pancreatitis, with relatively high apoptosis and low necrosis, and the mouse model, with little apoptosis and high necrosis. We found that caspases were greatly activated during cerulein pancreatitis in the rat but not mouse. Endogenous caspase inhibitor X-linked inhibitor of apoptosis protein (XIAP) underwent complete degradation in the rat but remained intact in the mouse model. Furthermore, XIAP inhibition with embelin triggered caspase activation in the mouse model, implicating XIAP in caspase blockade in pancreatitis. Caspase inhibitors decreased apoptosis and markedly stimulated necrosis in the rat model, worsening pancreatitis parameters. Conversely, caspase induction with embelin stimulated apoptosis and decreased necrosis in mouse model. Thus, caspases not only mediate apoptosis but also protect from necrosis in pancreatitis. One protective mechanism is through degradation of receptor-interacting protein (RIP), a key mediator of “programmed” necrosis. We found that RIP was cleaved (i.e. inactivated) in the rat but not the mouse model. Caspase inhibition restored RIP levels; conversely, caspase induction with embelin triggered RIP cleavage. Our results indicate key roles for caspases, XIAP, and RIP in the regulation of cell death in pancreatitis. Manipulating these signals to change the pattern of death responses presents a therapeutic strategy for treatment of pancreatitis.


Gastroenterology | 1999

Ethanol Diet Increases the Sensitivity of Rats to Pancreatitis Induced by Cholecystokinin Octapeptide

Stephen J. Pandol; Sasa Periskic; Ilya Gukovsky; Vjekoslav Zaninovic; Yoon Jung; Yumei Zong; Travis E. Solomon; Anna S. Gukovskaya; Hidekazu Tsukamoto

BACKGROUND & AIMS Although alcoholism is a major cause of pancreatitis, the pathogenesis of this disorder remains obscure. Failure to produce experimental alcoholic pancreatitis suggests that ethanol may only increase predisposition to pancreatitis. This study sought to develop a model of ethanol pancreatitis by determining if an ethanol diet sensitizes rats to pancreatitis caused by cholecystokinin octapeptide (CCK-8). METHODS Rats were fed intragastrically either control or ethanol diet for 2 or 6 weeks. The animals were then infused for 6 hours with either saline or CCK-8 at a dose of 3000 pmol. kg(-1). h(-1), which by itself did not induce pancreatitis. The following parameters were measured: serum amylase and lipase levels, pancreatic weight, inflammatory infiltration, number of apoptotic acinar cells, pancreatic messenger RNA (mRNA) expression of cytokines and chemokines, and nuclear factor (NF)-kappaB activity. RESULTS All measures of pancreatitis, as well as NF-kappaB activity and mRNA expression for tumor necrosis factor alpha, interleukin 6, monocyte chemotactic protein 1, macrophage inflammatory protein 2, and inducible nitric oxide synthase, were significantly increased only in rats treated with ethanol plus CCK-8. CONCLUSIONS An ethanol diet sensitizes rats to pancreatitis caused by CCK-8. The combined action of ethanol and CCK-8 results in NF-kappaB activation and up-regulation of proinflammatory cytokines and chemokines in the pancreas. These mechanisms may contribute to the development of alcoholic pancreatitis.


Journal of Clinical Investigation | 2009

Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis

Olga A. Mareninova; Kip Hermann; Samuel W. French; Mark S. O’Konski; Stephen J. Pandol; Paul Webster; Ann H. Erickson; Nobuhiko Katunuma; Fred S. Gorelick; Ilya Gukovsky; Anna S. Gukovskaya

The pathogenic mechanisms underlying acute pancreatitis are not clear. Two key pathologic acinar cell responses of this disease are vacuole accumulation and trypsinogen activation. We show here that both result from defective autophagy, by comparing the autophagic responses in rodent models of acute pancreatitis to physiologic autophagy triggered by fasting. Pancreatitis-induced vacuoles in acinar cells were greater in number and much larger than those induced with fasting. Degradation of long-lived proteins, a measure of autophagic efficiency, was markedly inhibited in in vitro pancreatitis, while it was stimulated by acinar cell starvation. Further, processing of the lysosomal proteases cathepsin L (CatL) and CatB into their fully active, mature forms was reduced in pancreatitis, as were their activities in the lysosome-enriched subcellular fraction. These findings indicate that autophagy is retarded in pancreatitis due to deficient lysosomal degradation caused by impaired cathepsin processing. Trypsinogen activation occurred in pancreatitis but not with fasting and was prevented by inhibiting autophagy. A marker of trypsinogen activation partially localized to autophagic vacuoles, and pharmacologic inhibition of CatL increased the amount of active trypsin in acinar cells. The results suggest that retarded autophagy is associated with an imbalance between CatL, which degrades trypsinogen and trypsin, and CatB, which converts trypsinogen into trypsin, resulting in intra-acinar accumulation of active trypsin in pancreatitis. Thus, deficient lysosomal degradation may be a dominant mechanism for increased intra-acinar trypsin in pancreatitis.


Gastroenterology | 2013

Inflammation, Autophagy, and Obesity: Common Features in the Pathogenesis of Pancreatitis and Pancreatic Cancer

Ilya Gukovsky; Ning Li; Jelena Todoric; Anna S. Gukovskaya; Michael Karin

Inflammation and autophagy are cellular defense mechanisms. When these processes are deregulated (deficient or overactivated) they produce pathologic effects, such as oxidative stress, metabolic impairments, and cell death. Unresolved inflammation and disrupted regulation of autophagy are common features of pancreatitis and pancreatic cancer. Furthermore, obesity, a risk factor for pancreatitis and pancreatic cancer, promotes inflammation and inhibits or deregulates autophagy, creating an environment that facilitates the induction and progression of pancreatic diseases. However, little is known about how inflammation, autophagy, and obesity interact to promote exocrine pancreatic disorders. We review the roles of inflammation and autophagy, and their deregulation by obesity, in pancreatic diseases. We discuss the connections among disordered pathways and important areas for future research.


Pancreatology | 2004

Cell death pathways in pancreatitis and pancreatic cancer

Anna S. Gukovskaya; Stephen J. Pandol

The understanding of the regulation of apoptosis and necrosis, the two principal cell death pathways, is becoming exceedingly important in investigations of the pathogenesis and treatment of pancreatitis and pancreatic cancer. For example, in acute pancreatitis significant amounts of pancreatic necrosis are associated with increased morbidity and mortality. Thus, determining the key steps regulating necrosis should provide insights into potential therapeutic strategies for improving outcome in these patients. On the other hand, in pancreatic cancer various survival mechanisms act to prevent cell death, resulting in promotion of tumor growth and metastasis. Resistance of pancreatic cancer to apoptosis is the key factor preventing responses to therapies. Investigations of the regulation of cell death mechanisms specific to pancreatic cancer should lead to improvements in our current therapies for this disease. The present review is designed to provide information about cell death pathways in pancreatitis and pancreatic cancer with reference to areas that need further investigation, as well as to provide measurement techniques adapted to pancreatic tissue and cells.


Clinical Gastroenterology and Hepatology | 2009

Desmoplasia of Pancreatic Ductal Adenocarcinoma

Stephen J. Pandol; Mouad Edderkaoui; Ilya Gukovsky; Aurelia Lugea; Anna S. Gukovskaya

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and is characterized by remarkable desmoplasia. The desmoplasia is composed of extracellular matrix (ECM) proteins, myofibroblastic pancreatic stellate cells, and immune cells associated with a multitude of cytokines, growth factors, and ECM metabolizing enzymes. The mechanisms of participation of this complex matrix process in carcinogenesis are only starting to be appreciated. Recent studies showed key roles for stellate cells in the production of ECM proteins as well as cytokines and growth factors that promote the growth of the cancer cells all present in the desmoplastic parts of PDAC. In addition, interactions of ECM proteins and desmoplastic secreted growth factors with the cancer cells of PDAC activate intracellular signals including reactive oxygen species that act to make the cancer cells resistant to dying. These findings suggest that the desmoplasia of PDAC is a key factor in regulating carcinogenesis of PDAC as well as responses to therapies. A better understanding of the biology of desmoplasia in the mechanism of PDAC will likely provide significant opportunities for better treatments for this devastating cancer.


Biochimica et Biophysica Acta | 2011

Baicalein, a component of Scutellaria baicalensis, induces apoptosis by Mcl-1 down-regulation in human pancreatic cancer cells ☆

Hiroki Takahashi; Monica C. Chen; Hung Pham; Eliane Angst; Jonathan C. King; Jenny Park; Ethan Y. Brovman; Hideyuki Ishiguro; Diane M. Harris; Howard A. Reber; Oscar J. Hines; Anna S. Gukovskaya; Vay Liang W. Go; Guido Eibl

Scutellaria baicalensis (SB) and SB-derived polyphenols possess anti-proliferative activities in several cancers, including pancreatic cancer (PaCa). However, the precise molecular mechanisms have not been fully defined. SB extract and SB-derived polyphenols (wogonin, baicalin, and baicalein) were used to determine their anti-proliferative mechanisms. Baicalein significantly inhibited the proliferation of PaCa cell lines in a dose-dependent manner, whereas wogonin and baicalin exhibited a much less robust effect. Treatment with baicalein induced apoptosis with release of cytochrome c from mitochondria, and activation of caspase-3 and -7 and PARP. The general caspase inhibitor zVAD-fmk reversed baicalein-induced apoptosis, indicating a caspase-dependent mechanism. Baicalein decreased expression of Mcl-1, an anti-apoptotic member of the Bcl-2 protein family, presumably through a transcriptional mechanism. Genetic knockdown of Mcl-1 resulted in marked induction of apoptosis. The effect of baicalein on apoptosis was significantly attenuated by Mcl-1 over-expression, suggesting a critical role of Mcl-1 in this process. Our results provide evidence that baicalein induces apoptosis in pancreatic cancer cells through down-regulation of the anti-apoptotic Mcl-1 protein.

Collaboration


Dive into the Anna S. Gukovskaya's collaboration.

Top Co-Authors

Avatar

Stephen J. Pandol

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ilya Gukovsky

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurelia Lugea

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mouad Edderkaoui

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Eibl

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge