Anna Skoracka
Adam Mickiewicz University in Poznań
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Skoracka.
Experimental and Applied Acarology | 2007
Sara Magalhães; Mark R. Forbes; Anna Skoracka; Masahiro Osakabe; Christine Chevillon; Karen D. McCoy
Host race formation generates diversity within species and may even lead to speciation. This phenomenon could be particularly prevalent in the Acari due to the often intimate interaction these species have with their hosts. In this review, we explore the process of host race formation, whether it is likely to occur in this group and what features may favour its evolution. Although few studies are currently available and tend to be biased toward two model species, results suggest that host races are indeed common in this group, and more likely to occur when hosts are long-lived. We discuss future directions for research on host-associated adaptations in this group of organisms and the potential relevance of host race formation for the biodiversity of mites and ticks.
Experimental and Applied Acarology | 2010
Katarzyna Michalska; Anna Skoracka; Denise Navia; James W. Amrine
Eriophyoid mites are excellent candidates for ethological research using the approaches of behavioural ecology and sociobiology. These tiny haplodiploid mites are highly specialized plant parasites, producing galls, forming nests, inhabiting refuges or living freely on plants. They reproduce via spermatophores deposited on a substrate and without pairing, which is a fascinating, though still poorly understood, mode of reproduction widespread in some groups of arthropods. Eriophyoid males can be involved in external sperm competition. In some species they also guard pre-emergent females and deposit spermatophores beside them. Although slow-walking, the minute eriophyoid mites can disperse for long distances on air currents or specific animal carriers. After landing on a plant they can distinguish between suitable and unsuitable hosts. Biological observations on a deuterogynous species indicate that parasociality could occur among eriophyoid mites. Many eriophyoids are of economic importance. Knowledge of their behaviour may promote understanding their ecology, may resolve problems in their phylogeny and may help developing methods for their control. In this paper, attention is directed to dispersal modes of eriophyoid mites, their feeding and host acceptance, spermatophore deposition and mating, defence against predators, and social behaviour.
Experimental and Applied Acarology | 2010
Anna Skoracka; Lincoln Smith; G. N. Oldfield; Massimo Cristofaro; James W. Amrine
Eriophyoid mites, which are among the smallest plant feeders, are characterized by the intimate relationships they have with their hosts and the restricted range of plants upon which they can reproduce. The knowledge of their true host ranges and mechanisms causing host specificity is fundamental to understanding mite-host interactions, potential mite-host coevolution, and diversity of this group, as well as to apply effective control strategies or to use them as effective biological control agents. The aim of this paper is to review current knowledge on host specificity and specialization in eriophyoid mites, and to point out knowledge gaps and doubts. Using available data on described species and recorded hosts we showed that: (1) 80% of eriophyoids have been reported on only one host species, 95% on one host genus, and 99% on one host family; (2) Diptilomiopidae has the highest proportion of monophagous species and Phytoptidae has the fewest; (3) non-monophagous eriophyoids show the tendency to infest closely related hosts; 4) vagrant eriophyoids have a higher proportion of monophagous species than refuge-seeking and refuge-inducing species; (5) the proportions of monophagous species infesting annual and perennial hosts are similar; however, many species infesting annual hosts have wider host ranges than those infesting perennial hosts; (6) the proportions of species that are monophagous infesting evergreen and deciduous plants are similar; (7) non-monophagous eriophyoid species have wider geographic distribution than monophagous species. Field and laboratory host-specificity tests for several eriophyoid species and their importance for biological control of weeds are described. Testing the actual host range of a given eriophyoid species, searching for ecological data, genetic differentiation analysis, and recognizing factors and mechanisms that contribute to host specificity of eriophyoid mites are suggested as future directions for research.
Experimental and Applied Acarology | 2013
Denise Navia; Renata Santos de Mendonça; Anna Skoracka; Wiktoria Szydło; Danuta Knihinicki; Gary L. Hein; Paulo Roberto Valle da Silva Pereira; G. Truol; D. Lau
The wheat curl mite (WCM), Aceria tosichella, and the plant viruses it transmits represent an invasive mite-virus complex that has affected cereal crops worldwide. The main damage caused by WCM comes from its ability to transmit and spread multiple damaging viruses to cereal crops, with Wheat streak mosaic virus (WSMV) and Wheat mosaic virus (WMoV) being the most important. Although WCM and transmitted viruses have been of concern to cereal growers and researchers for at least six decades, they continue to represent a challenge. In older affected areas, for example in North America, this mite-virus complex still has significant economic impact. In Australia and South America, where this problem has only emerged in the last decade, it represents a new threat to winter cereal production. The difficulties encountered in making progress towards managing WCM and its transmitted viruses stem from the complexity of the pathosystem. The most effective methods for minimizing losses from WCM transmitted viruses in cereal crops have previously focused on cultural and plant resistance methods. This paper brings together information on biological and ecological aspects of WCM, including its taxonomic status, occurrence, host plant range, damage symptoms and economic impact. Information about the main viruses transmitted by WCM is also included and the epidemiological relationships involved in this vectored complex of viruses are also addressed. Management strategies that have been directed at this mite-virus complex are presented, including plant resistance, its history, difficulties and advances. Current research perspectives to address this invasive mite-virus complex and minimize cereal crop losses worldwide are also discussed.
Invertebrate Systematics | 2012
Anna Skoracka; Lechosław Kuczyński; Renata Santos de Mendonça; Miroslawa Dabert; Wiktoria Szydło; Danuta Knihinicki; G. Truol; Denise Navia
Abstract. The wheat curl mite (WCM), Aceria tosichella (Keifer, 1969), is one of the primary pests of wheat and other cereals throughout the world. Traditional taxonomy recognises WCM as a single eriophyoid species; however, a recent study suggested that two genetic lineages of WCM in Australia might represent putative species. Here, we investigate WCM populations from different host plants in Australia, South America and Europe and test the hypothesis that WCM is, in fact, a complex of cryptic species. We used morphological data in combination with nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and nuclear D2 region of 28S rDNA and internal transcribed spacer region (ITS1, ITS2) sequences. The molecular analyses did not support the monophyly of A. tosichella because the outgroup A. tulipae (Keifer, 1938) is grouped within WCM. The molecular datasets indicated the existence of distinct lineages within WCM, with the distances between lineages corresponding to interspecific divergence. Morphological analyses failed to clearly separate WCM populations and lineages, but completely separated A. tulipae from A. tosichella. The results suggest that what has been recognised historically as a single species is, in fact, a complex of several genetically isolated evolutionary lineages that demonstrate potential as cryptic species. Hence, their discrimination using solely morphological criteria may be misleading. These findings are particularly significant because of the economic importance of WCM as a direct pest and vector of plant viruses.
Experimental and Applied Acarology | 2010
Enrico de Lillo; Anna Skoracka
Fundamental knowledge on the morphology, biology, ecology, and economic importance of Eriophyoidea has been exhaustively compiled by Lindquist et al. (Eriophyoid mites—their biology, natural enemies and control; Elsevier, 1996). Since that time, the number of recognized species and the economic importance of the taxon have increased substantially. The aim of this paper is to analyze and briefly review new findings from eriophyoid mites’ literature after Lindquist et al. book, stressing persistent gaps and needs. Much recent attention has been given to sampling and detection, taxonomy and systematics, faunistic surveys, internal morphology, rearing techniques, biological and ecological aspects, biomolecular studies, and virus vectoring. Recommendations are made for integrating research and promoting broader dissemination of data among specialists and non-specialists.
Experimental and Applied Acarology | 2002
Anna Skoracka; Lechosław Kuczyński; Wojciech L. Magowski
The present systematic classification of Eriophyoidea is widelyrecognised as artificial and not reflecting plant-herbivore linkage.Quantitative description of host-related morphological variation can providethebasic information needed to improve the eriophyoid taxonomic system and enhanceour understanding of mechanisms generating this variation. The purpose of thisstudy was to investigate quantitative morphological traits of populations ofcereal rust mite Abacarus hystrix living on different hosts. Threepopulations of A. hystrix collected from different grasses(Lolium perenne, Bromus inermis and Elytrigiarepens) were examined morphologically. MANOVA analysis revealedsignificant differences in vectors of means among the three populations.Discriminant analysis yielded 11 traits that significantly differentiate thethree populations. Analysis of canonical loadings showed that traits, whichbestdiscriminate the populations living on different hosts, are: body elongation,length of setae and overall body size. Host-dependent morphological variationisinterpreted in terms of adaptation to specific environmental conditions createdby the host. Hypotheses on the sources of this variation are discussed.
Experimental and Applied Acarology | 2006
Anna Skoracka; Lechosław Kuczyński
The majority of eriophyoid mites are highly host specific and restricted to a narrow range of acceptable host plant species. The cereal rust mite, Abacarus hystrix was considered to be one of a few exceptions among them and has been found to be using a relatively wide host range. Since this species is a vagrant, inhabiting short-lived plants and aerially dispersing, it has commonly been considered to be a host generalist. Here the opposite hypothesis is tested, that host populations of A. hystrix are specialized on their local host plants and may represent host races. For this purpose, females from two host populations (quack grass, Agropyron repens and ryegrass, Lolium perenne) were transferred, and subsequently reared, on their normal (grass species from which females came from) and novel (other grass species) hosts. The females fitness was assessed by survival and fecundity on the normal and novel host. Females of both populations had no success in the colonization of the novel host. They survived significantly better and had significantly higher fecundity on their normal host than on the novel one. These findings correspond with observations on host-dependent phenotype variability and host acceptance. The presence of locally specialized host populations in A. hystrix may be evidence for high host specificity among eriophyoids and the viruses they transmit. The main conclusion is that A. hystrix, which so far has been considered as a host generalist, in fact may be a complex species consisting of highly specialized host races.
Experimental and Applied Acarology | 2010
Efrat Gamliel-Atinsky; Stanley Freeman; Marcel Maymon; Eduard Belausov; Ronald Ochoa; Gary R. Bauchan; Anna Skoracka; Jorge E. Peña; Eric Palevsky
A considerable number of plant feeding mites representing different families such as Acaridae, Siteroptidae, Tydeidae, and Tarsonemidae interact with plant pathogenic fungi. While species within the Eriophyoidea appear to be the most common phytophagous mites vectoring virus diseases, little is known of their role in fungal pathogen epidemiology. In the present article, we present two studies on eriophyoid-fungal relationships. The first focusing on the association between Aceria mangiferae and the fungal pathogen Fusarium mangiferae in mango is presented as a case study. The second, as the research is still in a preliminary phase, reports on quantitative and descriptive associations between the cereal rust mite Abacarus hystrix and rusts caused by Puccinia spp. Mango bud tissue colonized with F. mangiferae, and wheat and quackgrass leaves colonized with Puccinia spp., supported significantly higher populations of eriophyoid mites. Both mite species were observed bearing the spores of the respective pathogens on their body integument. Aceria mangiferae vectored the pathogen’s spores into the bud, the sole port of entry for the fungal pathogen and the frequency and severity of fungal infection increased in the presence of A. mangiferae. While it appears that eriophyoids are playing a role in fungal epidemiology, clearly further research is needed to enhance our understanding of direct and indirect (plant mediated) interactions between plant pathogens and eriophyoid mites in different plant-pathogen systems.
Environmental Entomology | 2007
Anna Skoracka; Lechosław Kuczyński; Brian G. Rector
Abstract For phytophagous arthropods, host acceptance behavior is a key character responsible for host plant specialization. The grain rust mite, Abacarus hystrix (Nalepa), is an obligately phytophagous, polyphagous eriophyid mite recorded from at least 70 grass species. In this study, the hypothesis that two host populations of this mite (one collected from quackgrass and the other from ryegrass) are highly host-specific was tested using behavioral data. For this purpose, female behavior when exposed to familiar and novel host plants was observed in no-choice cross experiments. Altogether, 13 variables were used to describe mite behavior. Data were subjected to principal component analysis, and host acceptance behavior was subsequently tested with generalized estimating equations (GEE). Distinct variation in female behavior between familiar and novel hosts was observed. Females from neither population accepted novel hosts. This was recorded as significant differences in the occupation of and overall activity on particular plant parts. On their familiar host, females were not active and showed little tendency to move. On novel hosts females were more active and mobile, spending more time walking, running, and climbing on the whole plant surface and showing a tendency to disperse. Other differences in behavior between studied populations were also observed. Thus, the results suggest that mites of these two studied populations (1) differ in their behaviors during plant exploitation and (2) can quickly distinguish between their familiar host and an unfamiliar host used by a conspecific. These findings support the hypothesis of narrow host specialization of ryegrass and quackgrass populations of this highly polyphagous species.