Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna V. Kudryavtseva is active.

Publication


Featured researches published by Anna V. Kudryavtseva.


PLOS ONE | 2011

Differential Expression of CHL1 Gene during Development of Major Human Cancers

Vera N. Senchenko; George S. Krasnov; Alexey A. Dmitriev; Anna V. Kudryavtseva; Ekaterina A. Anedchenko; E. A. Braga; I. V. Pronina; Tatiana T. Kondratieva; Sergey V. Ivanov; Eugene R. Zabarovsky; Michael I. Lerman

Background CHL1 gene (also known as CALL) on 3p26.3 encodes a one-pass trans-membrane cell adhesion molecule (CAM). Previously CAMs of this type, including L1, were shown to be involved in cancer growth and metastasis. Methodology/Principal Findings We used Clontech Cancer Profiling Arrays (19 different types of cancers, 395 samples) to analyze expression of the CHL1 gene. The results were further validated by RT-qPCR for breast, renal and lung cancer. Cancer Profiling Arrays revealed differential expression of the gene: down-regulation/silencing in a majority of primary tumors and up-regulation associated with invasive/metastatic growth. Frequent down-regulation (>40% of cases) was detected in 11 types of cancer (breast, kidney, rectum, colon, thyroid, stomach, skin, small intestine, bladder, vulva and pancreatic cancer) and frequent up-regulation (>40% of cases) – in 5 types (lung, ovary, uterus, liver and trachea) of cancer. Using real-time quantitative PCR (RT-qPCR) we found that CHL1 expression was decreased in 61% of breast, 60% of lung, 87% of clear cell and 89% papillary renal cancer specimens (P<0.03 for all the cases). There was a higher frequency of CHL1 mRNA decrease in lung squamous cell carcinoma compared to adenocarcinoma (81% vs. 38%, P = 0.02) without association with tumor progression. Conclusions/Significance Our results suggested that CHL1 is involved in the development of different human cancers. Initially, during the primary tumor growth CHL1 could act as a putative tumor suppressor and is silenced to facilitate in situ tumor growth for 11 cancer types. We also suggested that re-expression of the gene on the edge of tumor mass might promote local invasive growth and enable further metastatic spread in ovary, colon and breast cancer. Our data also supported the role of CHL1 as a potentially novel specific biomarker in the early pathogenesis of two major histological types of renal cancer.


Expert Opinion on Therapeutic Targets | 2013

Deregulation of glycolysis in cancer: glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target.

George S. Krasnov; Alexey A. Dmitriev; Anastasiya V. Snezhkina; Anna V. Kudryavtseva

Introduction: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme, but recent studies have shown its non-glycolytic role in cell death, survival mechanisms and diseases. Increase in glycolysis, in particular overexpression of GAPDH, has been considered an important feature of many types of cancer cells. This review focuses on the role of GAPDH in carcinogenesis and the possibility of using this target for anticancer therapy. Areas covered: In this review, the studies targeting GAPDH in human cancer as well as its functions in normal and cancer cells are described and discussed. Expert opinion: GAPDH is an essential component of the glycolysis energy system, which is actively employed in cancer cells. Analysis of the so-called bioenergetics signature (the ratio of beta-F1-ATPase and GAPDH proteins) of different cancer types can be used for estimation of the cell metabolic activity, cancer aggressiveness and response to chemotherapy. Recent studies suggest GAPDH as a promising target for therapy of some carcinomas. Incidentally, limitations of this approach may come from the versatility of the GAPDH enzyme, since it combines glycolytic, pro-apoptotic and other activities. Hence, targeting GAPDH may lead to unexpected results concerning normal cells and therefore requires further research.


Epigenetics | 2012

Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays

Alexey A. Dmitriev; Klas Haraldson; Vera N. Senchenko; Tatiana V. Pavlova; Anna V. Kudryavtseva; Ekaterina A. Anedchenko; George S. Krasnov; I. V. Pronina; Vitalij I. Loginov; Tatiana T. Kondratieva; T. P. Kazubskaya; E. A. Braga; Surya Pavan Yenamandra; Ilya Ignatjev; Ingemar Ernberg; George Klein; Michael I. Lerman; Eugene R. Zabarovsky

This study aimed to clarify genetic and epigenetic alterations that occur during lung carcinogenesis and to design perspective sets of newly identified biomarkers. The original method includes chromosome 3 specific NotI-microarrays containing 180 NotI clones associated with genes for hybridization with 40 paired normal/tumor DNA samples of primary lung tumors: 28 squamous cell carcinomas (SCC) and 12 adenocarcinomas (ADC). The NotI-microarray data were confirmed by qPCR and bisulfite sequencing analyses. Forty-four genes showed methylation and/or deletions in more than 15% of non–small cell lung cancer (NSCLC) samples. In general, SCC samples were more frequently methylated/deleted than ADC. Moreover, the SCC alterations were observed already at stage I of tumor development, whereas in ADC many genes showed tumor progression specific methylation/deletions. Among genes frequently methylated/deleted in NSCLC, only a few were already known tumor suppressor genes: RBSP3 (CTDSPL), VHL and THRB. The RPL32, LOC285205, FGD5 and other genes were previously not shown to be involved in lung carcinogenesis. Ten methylated genes, i.e., IQSEC1, RBSP3, ITGA9, FOXP1, LRRN1, GNAI2, VHL, FGD5, ALDH1L1 and BCL6 were tested for expression by qPCR and were found downregulated in the majority of cases. Three genes (RBSP3, FBLN2 and ITGA9) demonstrated strong cell growth inhibition activity. A comprehensive statistical analysis suggested the set of 19 gene markers, ANKRD28, BHLHE40, CGGBP1, RBSP3, EPHB1, FGD5, FOXP1, GORASP1/TTC21, IQSEC1, ITGA9, LOC285375, LRRC3B, LRRN1, MITF, NKIRAS1/RPL15, TRH, UBE2E2, VHL, WNT7A, to allow early detection, tumor progression, metastases and to discriminate between SCC and ADC with sensitivity and specificity of 80–100%.


Expert Opinion on Therapeutic Targets | 2013

Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy

George S. Krasnov; Alexey A. Dmitriev; Valentina A. Lakunina; Alexander A Kirpiy; Anna V. Kudryavtseva

Introduction: Enhancement of glucose metabolism and repression of oxidative phosphorylation followed by the Warburg effect is the common hallmark of cancer cells. Hexokinase II (HKII) plays a dual role – first, HKII up-regulation results in increased glycolysis rates. Second, association of VDAC and HKII contributes to inhibition of apoptosis through repression of the formation of mitochondrial permeability transition pores. Areas covered: In this review, the role of HKII in evasion of apoptosis, aspects of HKII expression regulation, novel approaches targeting HKII and VDAC–HKII complexes and their application areas are discussed. Expert opinion: The dual role of HKII in cancer cells makes it an attractive target for anti-cancer therapy. Several agents, either synthetic or plant-derived, that target hexokinase and induce VDAC–HK complex dissociation have been identified to date. Targeting hexokinase, HK–VDAC complexes as well as other glycolytic proteins not only improves the efficacy of commonly used drugs. The most prominent benefit of this approach is the ability to overcome drug resistance, for example, to cisplatin or sorafenib. In some cases, it could create an insurmountable challenge for selection of appropriate therapy. Future studies and trials should address the issue of how to transfer these approaches into clinical practice.


Oncotarget | 2016

Important molecular genetic markers of colorectal cancer.

Anna V. Kudryavtseva; Anastasia V. Lipatova; Andrew R. Zaretsky; Alexey Moskalev; Maria S. Fedorova; Anastasiya S. Rasskazova; Galina A. Shibukhova; Anastasiya V. Snezhkina; Kaprin Ad; Boris Y. Alekseev; Alexey A. Dmitriev; George S. Krasnov

Colorectal cancer (CRC) ranks third in the incidences of cancer morbidity and mortality worldwide. CRC is rather heterogeneous with regard to molecular genetic characteristics and pathogenic pathways. A wide spectrum of biomarkers is used for molecular subtype determination, prognosis, and estimation of sensitivity to different drugs in practice. These biomarkers can include germline and somatic mutations, chromosomal aberrations, genomic abnormalities, gene expression alterations at mRNA or protein level and changes in DNA methylation status. In the present review we discuss the most important and well-studied CRC biomarkers, and their potential clinical significance and current approaches to molecular classification of colorectal tumors.


Oncotarget | 2016

Mitochondrial dysfunction and oxidative stress in aging and cancer

Anna V. Kudryavtseva; George S. Krasnov; Alexey A. Dmitriev; Boris Y. Alekseev; Olga L. Kardymon; Asiya F. Sadritdinova; Maria S. Fedorova; Anatoly V. Pokrovsky; Nataliya V. Melnikova; Kaprin Ad; Alexey Moskalev; Anastasiya V. Snezhkina

Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype.


PLOS ONE | 2008

HYAL1 and HYAL2 inhibit tumour growth in vivo but not in vitro.

Fuli Wang; Elvira V. Grigorieva; Jingfeng Li; Vera N. Senchenko; Tatiana V. Pavlova; Ekaterina A. Anedchenko; Anna V. Kudryavtseva; Alexander Tsimanis; Debora Angeloni; Michael I. Lerman; George Klein; Eugene R. Zabarovsky

Background We identified two 3p21.3 regions (LUCA and AP20) as most frequently affected in lung, breast and other carcinomas and reported their fine physical and gene maps. It is becoming increasingly clear that each of these two regions contains several TSGs. Until now TSGs which were isolated from AP20 and LUCA regions (e.g.G21/NPRL2, RASSF1A, RASSF1C, SEMA3B, SEMA3F, RBSP3) were shown to inhibit tumour cell growth both in vitro and in vivo. Methodology/Principal Findings The effect of expression HYAL1 and HYAL2 was studied by colony formation inhibition, growth curve and cell proliferation tests in vitro and tumour growth assay in vivo. Very modest growth inhibition was detected in vitro in U2020 lung and KRC/Y renal carcinoma cell lines. In the in vivo experiment stably transfected KRC/Y cells expressing HYAL1 or HYAL2 were inoculated into SCID mice (10 and 12 mice respectively). Tumours grew in eight mice inoculated with HYAL1. Ectopic HYAL1 was deleted in all of them. HYAL2 was inoculated into 12 mice and only four tumours were obtained. In 3 of them the gene was deleted. In one tumour it was present but not expressed. As expected for tumour suppressor genes HYAL1 and HYAL2 were down-expressed in 15 fresh lung squamous cell carcinomas (100%) and clear cell RCC tumours (60–67%). Conclusions/Significance The results suggest that the expression of either gene has led to inhibition of tumour growth in vivo without noticeable effect on growth in vitro. HYAL1 and HYAL2 thus differ in this aspect from other tumour suppressors like P53 or RASSF1A that inhibit growth both in vitro and in vivo. Targeting the microenvironment of cancer cells is one of the most promising venues of cancer therapeutics. As major hyaluronidases in human cells, HYAL1 and HYAL2 may control intercellular interactions and microenvironment of tumour cells providing excellent targets for cancer treatment.


Epigenetics | 2013

Novel tumor suppressor candidates on chromosome 3 revealed by NotI-microarrays in cervical cancer

Vera N. Senchenko; N. P. Kisseljova; Tatyana Ivanova; Alexey A. Dmitriev; George S. Krasnov; Anna V. Kudryavtseva; Grigory V. Panasenko; Evgeny B. Tsitrin; Michael I. Lerman; Fyodor L. Kisseljov; Eugene R. Zabarovsky

Genetic and epigenetic alterations in cervical carcinomas were investigated using NotI-microarrays containing 180 cloned sequences flanking all NotI-sites associated with genes on chromosome 3. In total, 48 paired normal/tumor DNA samples, specifically enriched in NotI-sites, were hybridized to NotI-microarrays. Thirty genes, including tumor suppressors or candidates (for example, VHL, RBSP3/CTDSPL, ITGA9, LRRC3B, ALDH1L1, EPHB1) and genes previously unknown as cancer-associated (ABHD5, C3orf77, PRL32, LOC285375, FGD5 and others), showed methylation/deletion in 21–44% of tumors. The genes were more frequently altered in squamous cell carcinomas (SCC) than in adenocarcinomas (ADC, p < 0.01). A set of seven potential markers (LRRN1, PRICKLE2, VHL, BHLHE40, RBSP3, CGGBP1 and SOX14) is promising for discrimination of ADC and SCC. Alterations of more than 20 genes simultaneously were revealed in 23% of SCC. Bisulfite sequencing analysis confirmed methylation as a frequent event in SCC. High down-regulation frequency was shown for RBSP3, ITGA9, VILL, APRG1/C3orf35 and RASSF1 (isoform A) genes (3p21.3 locus) in SCC. Both frequency and extent of RASSF1A and RBSP3 mRNA level decrease were more pronounced in tumors with lymph node metastases compared with non-metastatic ones (p ≤ 0.05). We confirmed by bisulfite sequencing that RASSF1 promoter methylation was a rare event in SCC and, for the first time, demonstrated RASSF1A down-regulation at both the mRNA and protein levels without promoter methylation in tumors of this histological type. Thus, our data revealed novel tumor suppressor candidates located on chromosome 3 and a frequent loss of epigenetic stability of 3p21.3 locus in combination with down-regulation of genes in cervical cancer.


Frontiers in Microbiology | 2016

Microbial Community Structure of Activated Sludge in Treatment Plants with Different Wastewater Compositions

Nataliya M. Shchegolkova; George S. Krasnov; Anastasia A. Belova; Alexey A. Dmitriev; Sergey L. Kharitonov; Kseniya M. Klimina; Nataliya V. Melnikova; Anna V. Kudryavtseva

Activated sludge (AS) plays a crucial role in the treatment of domestic and industrial wastewater. AS is a biocenosis of microorganisms capable of degrading various pollutants, including organic compounds, toxicants, and xenobiotics. We performed 16S rRNA gene sequencing of AS and incoming sewage in three wastewater treatment plants (WWTPs) responsible for processing sewage with different origins: municipal wastewater, slaughterhouse wastewater, and refinery sewage. In contrast to incoming wastewater, the taxonomic structure of AS biocenosis was found to become stable in time, and each WWTP demonstrated a unique taxonomic pattern. Most pathogenic microorganisms (Streptococcus, Trichococcus, etc.), which are abundantly represented in incoming sewage, were significantly decreased in AS of all WWTPs, except for the slaughterhouse wastewater. Additional load of bioreactors with influent rich in petroleum products and organic matter was associated with the increase of bacteria responsible for AS bulking and foaming. Here, we present a novel approach enabling the prediction of the metabolic potential of bacterial communities based on their taxonomic structures and MetaCyc database data. We developed a software application, XeDetect, to implement this approach. Using XeDetect, we found that the metabolic potential of the three bacterial communities clearly reflected the substrate composition. We revealed that the microorganisms responsible for AS bulking and foaming (most abundant in AS of slaughterhouse wastewater) played a leading role in the degradation of substrates such as fatty acids, amino acids, and other bioorganic compounds. Moreover, we discovered that the chemical, rather than the bacterial composition of the incoming wastewater was the main factor in AS structure formation. XeDetect (freely available: https://sourceforge.net/projects/xedetect) represents a novel powerful tool for the analysis of the metabolic capacity of bacterial communities. The tool will help to optimize bioreactor performance and avoid some most common technical problems.


Journal of Proteome Research | 2015

PPLine: An Automated Pipeline for SNP, SAP, and Splice Variant Detection in the Context of Proteogenomics.

George S. Krasnov; Alexey A. Dmitriev; Anna V. Kudryavtseva; Alexander Shargunov; Dmitry S. Karpov; Leonid A. Uroshlev; Natalya Vladimirovna Melnikova; Vladimir Mikhailovich Blinov; Ekaterina V. Poverennaya; Alexander I. Archakov; Andrey Valerievich Lisitsa; Elena A. Ponomarenko

The fundamental mission of the Chromosome-Centric Human Proteome Project (C-HPP) is the research of human proteome diversity, including rare variants. Liver tissues, HepG2 cells, and plasma were selected as one of the major objects for C-HPP studies. The proteogenomic approach, a recently introduced technique, is a powerful method for predicting and validating proteoforms coming from alternative splicing, mutations, and transcript editing. We developed PPLine, a Python-based proteogenomic pipeline providing automated single-amino-acid polymorphism (SAP), indel, and alternative-spliced-variants discovery based on raw transcriptome and exome sequence data, single-nucleotide polymorphism (SNP) annotation and filtration, and the prediction of proteotypic peptides (available at https://sourceforge.net/projects/ppline). In this work, we performed deep transcriptome sequencing of HepG2 cells and liver tissues using two platforms: Illumina HiSeq and Applied Biosystems SOLiD. Using PPLine, we revealed 7756 SAP and indels for HepG2 cells and liver (including 659 variants nonannotated in dbSNP). We found 17 indels in transcripts associated with the translation of alternate reading frames (ARF) longer than 300 bp. The ARF products of two genes, SLMO1 and TMEM8A, demonstrate signatures of caspase-binding domain and Gcn5-related N-acetyltransferase. Alternative splicing analysis predicted novel proteoforms encoded by 203 (liver) and 475 (HepG2) genes according to both Illumina and SOLiD data. The results of the present work represent a basis for subsequent proteomic studies by the C-HPP consortium.

Collaboration


Dive into the Anna V. Kudryavtseva's collaboration.

Top Co-Authors

Avatar

Alexey A. Dmitriev

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

George S. Krasnov

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Nataliya V. Melnikova

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Anastasiya V. Snezhkina

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Asiya F. Sadritdinova

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Alexey Moskalev

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Maria S. Fedorova

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Nadezhda L. Bolsheva

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

O. V. Muravenko

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge