Anna Valenti
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Valenti.
Biochemical Society Transactions | 2009
Giuseppe Perugino; Anna Valenti; Anna D'Amaro; Mosè Rossi; Maria Ciaramella
Reverse gyrase is a DNA topoisomerase that is peculiar in many aspects: it has the unique ability to introduce positive supercoils into DNA molecules; it comprises a type IA topoisomerase fused to a helicase-like domain; although it is a type IA topoisomerase, its reaction is ATP-dependent; and it is the only hyperthermophile-specific protein. All these features have made reverse gyrase the subject of biochemical, structural and functional studies, although they have not shed complete light on the evolution, mechanism and function of this distinctive enzyme. In the present article, we review the latest progress on structure-function relationships of reverse gyrase, and discuss old and recent data linking reverse gyrase to DNA stability, protection and repair in hyperthermophilic organisms.
Nucleic Acids Research | 2006
Anna Valenti; Alessandra Napoli; Maria Carmina Ferrara; Marc Nadal; Mosè Rossi; Maria Ciaramella
Reverse gyrase is a peculiar DNA topoisomerase, specific of hyperthermophilic Archaea and Bacteria, which has the unique ability of introducing positive supercoiling into DNA molecules. Although the function of the enzyme has not been established directly, it has been suggested to be involved in DNA protection and repair. We show here that the enzyme is degraded after treatment of Sulfolobus solfataricus cells with the alkylating agent MMS. MMS-induced reverse gyrase degradation is highly specific, since (i) neither hydroxyurea (HU) nor puromycin have a similar effect, and (ii) topoisomerase VI and two chromatin components are not degraded. Reverse gyrase degradation does not depend on protein synthesis. Experiments in vitro show that direct exposure of cell extracts to MMS does not induce reverse gyrase degradation; instead, extracts from MMS-treated cells contain some factor(s) able to degrade the enzyme in extracts from control cells. In vitro, degradation is blocked by incubation with divalent metal chelators, suggesting that reverse gyrase is selectively degraded by a metal-dependent protease in MMS-treated cells. In addition, we find a striking concurrence of extensive genomic DNA degradation and reverse gyrase loss in MMS-treated cells. These results support the hypothesis that reverse gyrase plays an essential role in DNA thermoprotection and repair in hyperthermophilic organisms.
Nucleic Acids Research | 2008
Anna Valenti; Giuseppe Perugino; Anna D’Amaro; Andrea Cacace; Alessandra Napoli; Mosè Rossi; Maria Ciaramella
Reverse gyrase is a peculiar DNA topoisomerase, specific of thermophilic microorganisms, which induces positive supercoiling into DNA molecules in an ATP-dependent reaction. It is a modular enzyme and comprises an N-terminal helicase-like module fused to a C-terminal topoisomerase IA-like domain. The exact molecular mechanism of this unique reaction is not understood, and a fundamental mechanistic question is how its distinct steps are coordinated. We studied the cross-talk between the components of this molecular motor and probed communication between the DNA-binding sites and the different activities (DNA relaxation, ATP hydrolysis and positive supercoiling). We show that the isolated ATPase and topoisomerase domains of reverse gyrase form specific physical interactions, retain their own DNA binding and enzymatic activities, and when combined cooperate to achieve the unique ATP-dependent positive supercoiling activity. Our results indicate a mutual effect of both domains on all individual steps of the reaction. The C-terminal domain shows ATP-independent topoisomerase activity, which is repressed by the N-terminal domain in the full-length enzyme; experiments with the isolated domains showed that the C-terminal domain has stimulatory influence on the ATPase activity of the N-terminal domain. In addition, the two domains showed a striking reciprocal thermostabilization effect.
Nucleic Acids Research | 2005
Alessandra Napoli; Anna Valenti; Vincenzo Salerno; Marc Nadal; Florence Garnier; Mosè Rossi; Maria Ciaramella
Reverse gyrase is a unique hyperthermophile-specific DNA topoisomerase that induces positive supercoiling. It is a modular enzyme composed of a topoisomerase IA and a helicase domain, which cooperate in the ATP-dependent positive supercoiling reaction. Although its physiological function has not been determined, it can be hypothesized that, like the topoisomerase–helicase complexes found in every organism, reverse gyrase might participate in different DNA transactions mediated by multiprotein complexes. Here, we show that reverse gyrase activity is stimulated by the single-strand binding protein (SSB) from the archaeon Sulfolobus solfataricus. Using a combination of in vitro assays we analysed each step of the complex reverse gyrase reaction. SSB stimulates all the steps of the reaction: binding to DNA, DNA cleavage, strand passage and ligation. By co-immunoprecipitation of cell extracts we show that reverse gyrase and SSB assemble a complex in the presence of DNA, but do not make stable protein–protein interactions. In addition, SSB stimulates reverse gyrase positive supercoiling activity on DNA templates associated with the chromatin protein Sul7d. Furthermore, SSB enhances binding and cleavage of UV-irradiated substrates by reverse gyrase. The results shown here suggest that these functional interactions may have biological relevance and that the interplay of different DNA binding proteins might modulate reverse gyrase activity in DNA metabolic pathways.
Journal of Biological Chemistry | 2012
Giuseppe Perugino; Antonella Vettone; Giuseppina Illiano; Anna Valenti; Maria Carmina Ferrara; Mosè Rossi; Maria Ciaramella
Background: DNA alkyltransferases repair mutagenic and carcinogenic alkylation DNA lesions. Results: A thermophilic archaeal DNA alkyltransferase is degraded after alkylation in vivo. A novel assay is applied to study its activity in vitro. Conclusion: The archaeal DNA alkyltransferase shows structure, activity, and in vivo regulation similar to its human homolog. Significance: The function and regulation of DNA alkyltransferases might be conserved from archaea to humans. Agents that form methylation adducts in DNA are highly mutagenic and carcinogenic, and organisms have evolved specialized cellular pathways devoted to their repair, including DNA alkyltransferases. These are proteins conserved in eucarya, bacteria and archaea, acting by a unique reaction mechanism, which leads to direct repair of DNA alkylation damage and irreversible protein alkylation. The alkylated form of DNA alkyltransferases is inactive, and in eukaryotes, it is rapidly directed to degradation. We report here in vitro and in vivo studies on the DNA alkyltransferase from the thermophilic archaeon Sulfolobus solfataricus (SsOGT). The development of a novel, simple, and sensitive fluorescence-based assay allowed a careful characterization of the SsOGT biochemical and DNA binding activities. In addition, transcriptional and post-translational regulation of SsOGT by DNA damage was studied. We show that although the gene transcription is induced by alkylating agent treatment, the protein is degraded in vivo by an alkylation-dependent mechanism. These experiments suggest a striking conservation, from archaea to humans, of this important pathway safeguarding genome stability.
Nucleic Acids Research | 2009
Anna Valenti; Giuseppe Perugino; Takehiko Nohmi; Mosè Rossi; Maria Ciaramella
Reverse gyrase is a unique DNA topoisomerase endowed with ATP-dependent positive supercoiling activity. It is typical of microorganisms living at high temperature and might play a role in maintenance of genome stability and repair. We have identified the translesion DNA polymerase SsoPolY/Dpo4 as one partner of reverse gyrase in the hyperthermophilic archaeon Sulfolobus solfataricus. We show here that in cell extracts, PolY and reverse gyrase co-immunoprecipitate with each other and with the single strand binding protein, SSB. The interaction is confirmed in vitro by far-western and Surface Plasmon Resonance. In functional assays, reverse gyrase inhibits PolY, but not the S. solfataricus B-family DNA polymerase PolB1. Mutational analysis shows that inhibition of PolY activity depends on both ATPase and topoisomerase activities of reverse gyrase, suggesting that the intact positive supercoiling activity is required for PolY inhibition. In vivo, reverse gyrase and PolY are degraded after induction of DNA damage. Inhibition by reverse gyrase and degradation might act as a double mechanism to control PolY and prevent its potentially mutagenic activity when undesired. Inhibition of a translesion polymerase by topoisomerase-induced modification of DNA structure may represent a previously unconsidered mechanism of regulation of these two-faced enzymes.
Biochemical Society Transactions | 2011
Anna Valenti; Giuseppe Perugino; Mosè Rossi; Maria Ciaramella
DNA supercoiling plays essential role in maintaining proper chromosome structure, as well as the equilibrium between genome dynamics and stability under specific physicochemical and physiological conditions. In mesophilic organisms, DNA is negatively supercoiled and, until recently, positive supercoiling was considered a peculiar mark of (hyper)thermophilic archaea needed to survive high temperatures. However, several lines of evidence suggest that negative and positive supercoiling might coexist in both (hyper)thermophilic and mesophilic organisms, raising the possibility that positive supercoiling might serve as a regulator of various cellular events, such as chromosome condensation, gene expression, mitosis, sister chromatid cohesion, centromere identity and telomere homoeostasis.
Journal of Biological Chemistry | 2012
Anna Valenti; Mariarita De Felice; Giuseppe Perugino; Anna Bizard; Marc Nadal; Mosè Rossi; Maria Ciaramella
Background: RecQ helicases and topoisomerase 3 enzymes play essential functions in all DNA activities, and their malfunctioning is associated with genomic instability. Results: A RecQ-like helicase and topoisomerase 3 from thermophilic archaea interact physically and functionally. Conclusion: The thermophilic enzymes show synergic and antagonistic activities on different DNA substrates. Significance: The results suggest a novel mechanism of modulation of RecQ-like helicases by topoisomerase 3 enzymes. RecQ family helicases and topoisomerase 3 enzymes form evolutionary conserved complexes that play essential functions in DNA replication, recombination, and repair, and in vitro, show coordinate activities on model recombination and replication intermediates. Malfunctioning of these complexes in humans is associated with genomic instability and cancer-prone syndromes. Although both RecQ-like and topoisomerase 3 enzymes are present in archaea, only a few of them have been studied, and no information about their functional interaction is available. We tested the combined activities of the RecQ-like helicase, Hel112, and the topoisomerase 3, SsTop3, from the thermophilic archaeon Sulfolobus solfataricus. Hel112 showed coordinate DNA unwinding and annealing activities, a feature shared by eukaryotic RecQ homologs, which resulted in processing of synthetic Holliday junctions and stabilization of model replication forks. SsTop3 catalyzed DNA relaxation and annealing. When assayed in combination, SsTop3 inhibited the Hel112 helicase activity on Holliday junctions and stimulated formation and stabilization of such structures. In contrast, Hel112 did not affect the SsTop3 DNA relaxation activity. RecQ-topoisomerase 3 complexes show structural similarity with the thermophile-specific enzyme reverse gyrase, which catalyzes positive supercoiling of DNA and was suggested to play a role in genome stability at high temperature. Despite such similarity and the high temperature of reaction, the SsTop3-Hel112 complex does not induce positive supercoiling and is thus likely to play different roles. We propose that the interplay between Hel112 and SsTop3 might regulate the equilibrium between recombination and anti-recombination activities at replication forks.
Journal of Biological Chemistry | 2014
Anmbreen Jamroze; Giuseppe Perugino; Anna Valenti; Naeem Rashid; Mosè Rossi; Muhammad Akhtar; Maria Ciaramella
Background: The thermophilic DNA topoisomerase reverse gyrase induces DNA-positive supercoiling. Results: The novel reverse gyrase, PcalRG, is presented. Conclusion: PcalRG is the most efficient and robust reverse gyrase known, and the first inducing ATP-dependent unwinding of Holliday junctions and annealing of single-stranded oligonucleotides. Significance: PcalRG shares structural and functional features with evolutionary conserved helicase-topoisomerase complexes involved in genome stability. Reverse gyrase is a DNA topoisomerase specific for hyperthermophilic bacteria and archaea. It catalyzes the peculiar ATP-dependent DNA-positive supercoiling reaction and might be involved in the physiological adaptation to high growth temperature. Reverse gyrase comprises an N-terminal ATPase and a C-terminal topoisomerase domain, which cooperate in enzyme activity, but details of its mechanism of action are still not clear. We present here a functional characterization of PcalRG, a novel reverse gyrase from the archaeon Pyrobaculum calidifontis. PcalRG is the most robust and processive reverse gyrase known to date; it is active over a wide range of conditions, including temperature, ionic strength, and ATP concentration. Moreover, it holds a strong ATP-inhibited DNA cleavage activity. Most important, PcalRG is able to induce ATP-dependent unwinding of synthetic Holliday junctions and ATP-stimulated annealing of unconstrained single-stranded oligonucleotides. Combined DNA unwinding and annealing activities are typical of certain helicases, but until now were shown for no other reverse gyrase. Our results suggest for the first time that a reverse gyrase shares not only structural but also functional features with evolutionary conserved helicase-topoisomerase complexes involved in genome stability.
Journal of Biological Chemistry | 2010
Anna Valenti; Giuseppe Perugino; Antonio Varriale; Sabato D'Auria; Mosè Rossi; Maria Ciaramella
Four-way junctions are non-B DNA structures that originate as intermediates of recombination and repair (Holliday junctions) or from the intrastrand annealing of palindromic sequences (cruciforms). These structures have important functional roles but may also severely interfere with DNA replication and other genetic processes; therefore, they are targeted by regulatory and architectural proteins, and dedicated pathways exist for their removal. Although it is well known that resolution of Holliday junctions occurs either by recombinases or by specialized helicases, less is known on the mechanisms dealing with secondary structures in nucleic acids. Reverse gyrase is a DNA topoisomerase, specific to microorganisms living at high temperatures, which comprises a type IA topoisomerase fused to an SF2 helicase-like module and catalyzes ATP hydrolysis-dependent DNA positive supercoiling. Reverse gyrase is likely involved in regulation of DNA structure and stability and might also participate in the cell response to DNA damage. By applying FRET technology to multiplex fluorophore gel imaging, we show here that reverse gyrase induces unwinding of synthetic four-way junctions as well as forked DNA substrates, following a mechanism independent of both the ATPase and the strand-cutting activity of the enzyme. The reaction requires high temperature and saturating protein concentrations. Our results suggest that reverse gyrase works like an ATP-independent helix-destabilizing protein specific for branched DNA structures. The results are discussed in light of reverse gyrase function and their general relevance for protein-mediated unwinding of complex DNA structures.