Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Velcich is active.

Publication


Featured researches published by Anna Velcich.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria

Malin E. V. Johansson; Mia Phillipson; Joel Petersson; Anna Velcich; Lena Holm; Gunnar C. Hansson

We normally live in symbiosis with ∼1013 bacteria present in the colon. Among the several mechanisms maintaining the bacteria/host balance, there is limited understanding of the structure, function, and properties of intestinal mucus. We now demonstrate that the mouse colonic mucus consists of two layers extending 150 μm above the epithelial cells. Proteomics revealed that both of these layers have similar protein composition, with the large gel-forming mucin Muc2 as the major structural component. The inner layer is densely packed, firmly attached to the epithelium, and devoid of bacteria. In contrast, the outer layer is movable, has an expanded volume due to proteolytic cleavages of the Muc2 mucin, and is colonized by bacteria. Muc2−/− mice have bacteria in direct contact with the epithelial cells and far down in the crypts, explaining the inflammation and cancer development observed in these animals. These findings show that the Muc2 mucin can build a mucus barrier that separates bacteria from the colon epithelia and suggest that defects in this mucus can cause colon inflammation.


Journal of Biological Chemistry | 2006

Histone Deacetylase 3 (HDAC3) and Other Class I HDACs Regulate Colon Cell Maturation and p21 Expression and Are Deregulated in Human Colon Cancer

Andrew J. Wilson; Do Sun Byun; Natalia Popova; Lucas B. Murray; Kaitlin L'Italien; Yoshihiro Sowa; Diego Arango; Anna Velcich; Leonard H. Augenlicht; John M. Mariadason

Inhibitors of histone deacetylases (HDACs) induce growth arrest, differentiation, and apoptosis of colon cancer cell lines in vitro and have demonstrated anti-cancer efficacy in clinical trials. Whereas a role for HDAC1 and -2 in mediating components of the HDAC inhibitor response has been reported, the role of HDAC3 is unknown. Here we demonstrate increased protein expression of HDAC3 in human colon tumors and in duodenal adenomas from Apc1638N/+ mice. HDAC3 was also maximally expressed in proliferating crypt cells in normal intestine. Silencing of HDAC3 expression in colon cancer cell lines resulted in growth inhibition, a decrease in cell survival, and increased apoptosis. Similar effects were observed for HDAC2 and, to a lesser extent, for HDAC1. HDAC3 silencing also selectively induced expression of alkaline phosphatase, a marker of colon cell maturation. Concurrent with its effect on cell growth, overexpression of HDAC3 and other Class I HDACs inhibited basal and butyrate-induced p21 transcription in a Sp1/Sp3-dependent manner, whereas silencing of HDAC3 stimulated p21 promoter activity and expression. However, the magnitude of the effects elicited by silencing of individual Class I HDACs was significantly less than that induced by HDAC inhibitors. These findings identify HDAC3 as a gene deregulated in human colon cancer and as a novel regulator of colon cell maturation and p21 expression. These findings also demonstrate that multiple Class I HDACs are involved in repressing p21 and suggest that the growth-inhibitory and apoptotic effects induced by HDAC inhibitors are probably mediated through the inhibition of multiple HDACs.


PLOS Pathogens | 2010

Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa

Kirk S. B. Bergstrom; Vanessa Kissoon-Singh; Deanna L. Gibson; Caixia Ma; Marinieve Montero; Ho Pan Sham; Natasha Ryz; Tina Huang; Anna Velcich; B. Brett Finlay; Kris Chadee; Bruce A. Vallance

Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Importance and regulation of the colonic mucus barrier in a mouse model of colitis

Joel Petersson; Olof Schreiber; Gunnar C. Hansson; Sandra J. Gendler; Anna Velcich; Jon O. Lundberg; Stefan Roos; Lena Holm; Mia Phillipson

The colonic mucus layer serves as an important barrier and prevents colonic bacteria from invading the mucosa and cause inflammation. The regulation of colonic mucus secretion is poorly understood. The aim of this study was to investigate the role of the mucus barrier in induction of colitis. Furthermore, regulation of mucus secretion by luminal bacterial products was studied. The colon of anesthetized Muc2(-/-), Muc1(-/-), wild-type (wt), and germ-free mice was exteriorized, the mucosal surface was visualized, and mucus thickness was measured with micropipettes. Colitis was induced by DSS (dextran sodium sulfate, 3%, in drinking water), and disease activity index (DAI) was assessed daily. The colonic mucosa of germ-free and conventionally housed mice was exposed to the bacterial products LPS (lipopolysaccharide) and PGN (peptidoglycan). After DSS induction of colitis, the thickness of the firmly adherent mucus layer was significantly thinner after 5 days and onward, which paralleled the increment of DAI. Muc2(-/-) mice, which lacked firmly adherent mucus, were predisposed to colitis, whereas Muc1(-/-) mice were protected with significantly lower DAI by DSS compared with wt mice. The mucus barrier increased in Muc1(-/-) mice in response to DSS, whereas significantly fewer T cells were recruited to the inflamed colon. Mice housed under germ-free conditions had an extremely thin adherent colonic mucus layer, but when exposed to bacterial products (PGN or LPS) the thickness of the adherent mucus layer was quickly restored to levels observed in conventionally housed mice. This study demonstrates a correlation between decreasing mucus barrier and increasing clinical symptoms during onset of colitis. Mice lacking colonic mucus (Muc2(-/-)) were hypersensitive to DSS-induced colitis, whereas Muc1(-/-) were protected, probably through the ability to increase the mucus barrier but also by decreased T cell recruitment to the afflicted site. Furthermore, the ability of bacteria to regulate the thickness of the colonic mucus was demonstrated.


Gastroenterology | 2010

Mucin Gene Deficiency in Mice Impairs Host Resistance to an Enteric Parasitic Infection

Sumaira Z. Hasnain; Huaqing Wang; Jean-Eric Ghia; Nihal Haq; Yikang Deng; Anna Velcich; Richard K. Grencis; David J. Thornton; Waliul I. Khan

Background & Aims Hyperplasia of mucin-secreting intestinal goblet cells accompanies a number of enteric infections, including infections by nematode parasites. Nevertheless, the precise role of mucins in host defense in nematode infection is not known. We investigated the role of the mucin (Muc2) in worm expulsion and host immunity in a model of nematode infection. Methods Resistant (BALB/c, C57BL/6), susceptible (AKR), and Muc2-deficient mouse strains were infected with the nematode, Trichuris muris, and worm expulsion, energy status of the whipworms, changes in mucus/mucins, and inflammatory and immune responses were investigated after infection. Results The increase in Muc2 production, observed exclusively in resistant mice, correlated with worm expulsion. Moreover, expulsion of the worms from the intestine was significantly delayed in the Muc2-deficient mice. Although a marked impairment in the development of periodic acid Schiff (PAS)–stained intestinal goblet cells was observed in Muc2-deficient mice, as infection progressed a significant increase in the number of PAS-positive goblet cells was observed in these mice. Surprisingly, an increase in Muc5ac, a mucin normally expressed in the airways and stomach, was observed after infection of only the resistant animals. Overall, the mucus barrier in the resistant mice was less permeable than that of susceptible mice. Furthermore, the worms isolated from the resistant mice had a lower energy status. Conclusions Mucins are an important component of innate defense in enteric infection; this is the first demonstration of the important functional contribution of mucins to host protection from nematode infection.


Cancer Research | 2008

Interaction of Muc2 and Apc on Wnt Signaling and in Intestinal Tumorigenesis: Potential Role of Chronic Inflammation

Kan Yang; Natalia Popova; Wancai Yang; Ioanna Lozonschi; Selam Tadesse; Scott Kent; Laura Bancroft; Ilze Matise; Robert T. Cormier; Stefan J. Scherer; Winfried Edelmann; Martin Lipkin; Leonard H. Augenlicht; Anna Velcich

Somatic mutations of the adenomatous polyposis coli (APC) gene are initiating events in the majority of sporadic colon cancers. A common characteristic of such tumors is reduction in the number of goblet cells that produce the mucin MUC2, the principal component of intestinal mucus. Consistent with these observations, we showed that Muc2 deficiency results in the spontaneous development of tumors along the entire gastrointestinal tract, independently of deregulated Wnt signaling. To dissect the complex interaction between Muc2 and Apc in intestinal tumorigenesis and to elucidate the mechanisms of tumor formation in Muc2(-/-) mice, we crossed the Muc2(-/-) mouse with two mouse models, Apc(1638N/+) and Apc(Min/+), each of which carries an inactivated Apc allele. The introduction of mutant Muc2 into Apc(1638N/+) and Apc(Min/+) mice greatly increased transformation induced by the Apc mutation and significantly shifted tumor development toward the colon as a function of Muc2 gene dosage. Furthermore, we showed that in compound double mutant mice, deregulation of Wnt signaling was the dominant mechanism of tumor formation. The increased tumor burden in the distal colon of Muc2/Apc double mutant mice was similar to the phenotype observed in Apc(Min/+) mice that are challenged to mount an inflammatory response, and consistent with this, gene expression profiles of epithelial cells from flat mucosa of Muc2-deficient mice suggested that Muc2 deficiency was associated with low levels of subclinical chronic inflammation. We hypothesize that Muc2(-/-) tumors develop through an inflammation-related pathway that is distinct from and can complement mechanisms of tumorigenesis in Apc(+/-) mice.


Infection and Immunity | 2013

The Mucin Muc2 Limits Pathogen Burdens and Epithelial Barrier Dysfunction during Salmonella enterica Serovar Typhimurium Colitis

Maryam Zarepour; Kirandeep Bhullar; Marinieve Montero; Caixia Ma; Tina Huang; Anna Velcich; Lijun Xia; Bruce A. Vallance

ABSTRACT Salmonella enterica serovar Typhimurium is a model organism used to explore the virulence strategies underlying Salmonella pathogenesis. Although intestinal mucus is the first line of defense in the intestine, its role in protection against Salmonella is still unclear. The intestinal mucus layer is composed primarily of the Muc2 mucin, a heavily O-glycosylated glycoprotein. The core 3-derived O-glycans of Muc2 are synthesized by core 3 β1,3-N-acetylglucosaminyltransferase (C3GnT). Mice lacking these glycans still produce Muc2 but display a thinner intestinal mucus barrier. We began our investigations by comparing Salmonella-induced colitis and mucus dynamics in Muc2-deficient (Muc2 −/−) mice, C3GnT −/− mice, and wild-type C57BL/6 (WT) mice. Salmonella infection led to increases in luminal Muc2 secretion in WT and C3GnT −/− mice. When Muc2 −/− mice were infected with Salmonella, they showed dramatic susceptibility to infection, carrying significantly higher cecal and liver pathogen burdens, and developing significantly higher barrier disruption and higher mortality rates, than WT mice. We found that the exaggerated barrier disruption in infected Muc2 −/− mice was invA dependent. We also tested the susceptibility of C3GnT −/− mice and found that they carried pathogen burdens similar to those of WT mice but developed exaggerated barrier disruption. Moreover, we found that Muc2 −/− mice were impaired in intestinal alkaline phosphatase (IAP) expression and lipopolysaccharide (LPS) detoxification activity in their ceca, potentially explaining their high mortality rates during infection. Our data suggest that the intestinal mucus layer (Muc2) and core 3 O-glycosylation play critical roles in controlling Salmonella intestinal burdens and intestinal epithelial barrier function, respectively.


American Journal of Pathology | 2005

Inactivation of p21WAF1/cip1 Enhances Intestinal Tumor Formation in Muc2−/− Mice

Wancai Yang; Anna Velcich; Ioana Lozonschi; Jiao Liang; Courtney Nicholas; Min Zhuang; Laura Bancroft; Leonard H. Augenlicht

In the Apc1638(+/-) mouse model of intestinal tumorigenesis, targeted inactivation of the cyclin-dependent kinase inhibitor p21(WAF1/cip1) is highly effective in enhancing Apc-initiated tumor formation in the intestine. Because p21(WAF1/cip1) plays a critical role in regulating intestinal cell proliferation, maturation, and tumorigenesis, we examined whether its inactivation would enhance tumor formation in a different mouse model of colon cancer. Therefore, we mated p21(-/-) mice with mice carrying a genetic deficiency of the Muc2 gene, which encodes the major gastrointestinal mucin. Muc2(-/-) mice develop tumors in the small and large intestine and the rectum, but in contrast to tumors in Apc1638(+/-) mice, this does not involve increased expression or nuclear localization of beta-catenin. We found that inactivation of p21(WAF1/cip1) significantly increased the frequency and size of intestinal tumors in Muc2 knockout mice and also led to development of more invasive adenocarcinomas. This enhanced tumorigenesis significantly decreased mouse life span. Further, inactivation of p21(WAF1/cip1) increased cell proliferation, decreased apoptosis, and decreased intestinal trefoil factor expression in the mucosa of both the small and large intestine. Surprisingly, reduced expression of p27(kip1) was also observed in the Muc2(-/-), p21(+/-), and p21(-/-) mice. In contrast, the expression of c-myc was significantly elevated. Thus, p21 modulates the formation of tumors whose initiation does (Apc) or does not (Muc2) involve altered beta-catenin-Tcf4 signaling, but which may converge on common elements downstream of this signaling pathway.


Journal of Biological Chemistry | 1997

Organization and Regulatory Aspects of the Human Intestinal Mucin Gene (MUC2) Locus

Anna Velcich; Lisa Palumbo; Licia Selleri; Glen A. Evans; Leonard H. Augenlicht

The human MUC2 gene maps to chromosome 11p15, where three additional mucin genes have been located, and encodes the most abundant gastrointestinal mucin normally expressed in the intestinal goblet cell lineage. However, in pathological conditions, including colorectal cancer, MUC2 can be abnormally expressed. Therefore, it is of considerable interest to understand the regulation of the MUC2 gene and how the mechanism is altered in colon cancer. Toward this goal, we have isolated a group of overlapping clones (contig) spanning 85 kilobases harboring the entire MUC2 locus, including sequences located upstream of the gene. Detection of two DNase I-hypersensitive sites in the 5′ region of the MUC2 gene suggests the presence of DNA regulatory elements. To better characterize this region, we have sequenced 12 kilobases of the upstream region and analyzed it for functional activity by cloning portions of it into a luciferase reporter vector and assaying for promoter/enhancer activity using a transient transfection assay. A fragment from the AUG translational initiation codon +1 to −848 confers maximal transcriptional activity in several intestinal cell lines. Elements located further upstream exert a negative effect on the expression of the reporter gene when tested in conjunction with homologous or heterologous promoters. The same pattern of expression is observed when the MUC2/luciferase constructs are transfected into HeLa cells, which do not express the endogenous MUC2 gene. However, the level of activity in HeLa cells is at least an order of magnitude higher, suggesting that additional sequences singularly or in combination are responsible for the tissue- and cell lineage-specific expression of MUC2 Finally, we have identified an additional mucin-like gene (MUCX), located upstream of MUC2 We show that this MUCX gene, that is transcribed in opposite orientation to that of MUC2, is expressed with a pattern distinct from that of MUC2, yet similar to that of MUC5B and MUC6, two additional mucin genes located at chromosome 11p15. Recent information on the order of the mucin genes at chromosome 11p15 suggests that MUCX may be MUC6, one of the already identified mucin genes, or a novel one, yet to be fully characterized.


Oncogene | 2003

Repression of MUC2 gene expression by butyrate, a physiological regulator of intestinal cell maturation

Leonard H. Augenlicht; Li Shi; John M. Mariadason; Christian L. Laboisse; Anna Velcich

Sodium butyrate (NaB) inhibits proliferation, stimulates apoptosis, and promotes differentiation of human colon cancer cells along the absorptive phenotype. In vitro, butyrate induces a switch from cells with a secretory to an absorptive phenotype. Here, we report that NaB specifically represses the expression of the MUC2 gene, a differentiation marker of the secretory goblet cell lineage, in forskolin- and 12-O-tetradecanoylphorbol 13-acetate-induced HT29 cells, and Cl.16E cells, a clonal derivative of HT29 cells that spontaneously differentiates into goblet cells. Thus, NaB repression is independent of the nature of the stimulus that triggers MUC2 expression. Further, repression was independent of new protein synthesis. Our results suggest that inhibition of MUC2 is linked to the ability of butyrate to repress histone deacetylase activity, since trichostatin A, another inhibitor of histone deacetylases, also inhibited MUC2 expression in induced HT29 cells. Finally, we demonstrate that the NaB effect is specific for this marker of the secretory cell lineage, since carcinoembryonic antigen, which is expressed in both the secretory and absorptive cells, is induced by NaB. Thus, the NaB repression of a definitive function of the secretory cell lineage is a further mechanism, in addition to the effects on proliferation and apoptotic pathways, through which butyrate can regulate intestinal homeostasis.

Collaboration


Dive into the Anna Velcich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Mariadason

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Wancai Yang

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kan Yang

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrid B. Renes

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge