Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Vuorinen is active.

Publication


Featured researches published by Anna Vuorinen.


The Journal of Steroid Biochemistry and Molecular Biology | 2011

Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11β-hydroxysteroid dehydrogenase type 2

Denise V. Kratschmar; Anna Vuorinen; Thierry Da Cunha; Gerhard Wolber; Dirk Classen-Houben; Otto Doblhoff; Daniela Schuster; Alex Odermatt

Modulation of intracellular glucocorticoid availability is considered as a promising strategy to treat glucocorticoid-dependent diseases. 18β-Glycyrrhetinic acid (GA), the biologically active triterpenoid metabolite of glycyrrhizin, which is contained in the roots and rhizomes of licorice (Glycyrrhiza spp.), represents a well-known but non-selective inhibitor of 11β-hydroxysteroid dehydrogenases (11β-HSDs). However, to assess the physiological functions of the respective enzymes and for potential therapeutic applications selective inhibitors are needed. In the present study, we applied bioassays and 3D-structure modeling to characterize nine 11β-HSD1 and fifteen 11β-HSD2 inhibiting GA derivatives. Comparison of the GA derivatives in assays using cell lysates revealed that modifications at the 3-hydroxyl and/or the carboxyl led to highly selective and potent 11β-HSD2 inhibitors. The data generated significantly extends our knowledge on structure-activity relationship of GA derivatives as 11β-HSD inhibitors. Using recombinant enzymes we found also potent inhibition of mouse 11β-HSD2, despite significant species-specific differences. The selected GA derivatives potently inhibited 11β-HSD2 in intact SW-620 colon cancer cells, although the rank order of inhibitory potential differed from that obtained in cell lysates. The biological activity of compounds was further demonstrated in glucocorticoid receptor (GR) transactivation assays in cells coexpressing GR and 11β-HSD1 or 11β-HSD2. 3D-structure modeling provides an explanation for the differences in the selectivity and activity of the GA derivatives investigated. The most potent and selective 11β-HSD2 inhibitors should prove useful as mechanistic tools for further anti-inflammatory and anti-cancer in vitro and in vivo studies. Article from the Special issue on Targeted Inhibitors.


Journal of Medicinal Chemistry | 2014

Ligand-Based Pharmacophore Modeling and Virtual Screening for the Discovery of Novel 17β-Hydroxysteroid Dehydrogenase 2 Inhibitors

Anna Vuorinen; Roger T. Engeli; Arne Meyer; Fabio Bachmann; Ulrich J. Griesser; Daniela Schuster; Alex Odermatt

17β-Hydroxysteroid dehydrogenase 2 (17β-HSD2) catalyzes the inactivation of estradiol into estrone. This enzyme is expressed only in a few tissues, and therefore its inhibition is considered as a treatment option for osteoporosis to ameliorate estrogen deficiency. In this study, ligand-based pharmacophore models for 17β-HSD2 inhibitors were constructed and employed for virtual screening. From the virtual screening hits, 29 substances were evaluated in vitro for 17β-HSD2 inhibition. Seven compounds inhibited 17β-HSD2 with low micromolar IC50 values. To investigate structure–activity relationships (SAR), 30 more derivatives of the original hits were tested. The three most potent hits, 12, 22, and 15, had IC50 values of 240 nM, 1 μM, and 1.5 μM, respectively. All but 1 of the 13 identified inhibitors were selective over 17β-HSD1, the enzyme catalyzing conversion of estrone into estradiol. Three of the new, small, synthetic 17β-HSD2 inhibitors showed acceptable selectivity over other related HSDs, and six of them did not affect other HSDs.


PLOS ONE | 2012

Virtual Screening as a Strategy for the Identification of Xenobiotics Disrupting Corticosteroid Action

Lyubomir G. Nashev; Anna Vuorinen; Lukas Praxmarer; Boonrat Chantong; Diego Cereghetti; Rahel Winiger; Daniela Schuster; Alex Odermatt

Background Impaired corticosteroid action caused by genetic and environmental influence, including exposure to hazardous xenobiotics, contributes to the development and progression of metabolic diseases, cardiovascular complications and immune disorders. Novel strategies are thus needed for identifying xenobiotics that interfere with corticosteroid homeostasis. 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) and mineralocorticoid receptors (MR) are major regulators of corticosteroid action. 11β-HSD2 converts the active glucocorticoid cortisol to the inactive cortisone and protects MR from activation by glucocorticoids. 11β-HSD2 has also an essential role in the placenta to protect the fetus from high maternal cortisol concentrations. Methods and Principal Findings We employed a previously constructed 3D-structural library of chemicals with proven and suspected endocrine disrupting effects for virtual screening using a chemical feature-based 11β-HSD pharmacophore. We tested several in silico predicted chemicals in a 11β-HSD2 bioassay. The identified antibiotic lasalocid and the silane-coupling agent AB110873 were found to concentration-dependently inhibit 11β-HSD2. Moreover, the silane AB110873 was shown to activate MR and stimulate mitochondrial ROS generation and the production of the proinflammatory cytokine interleukin-6 (IL-6). Finally, we constructed a MR pharmacophore, which successfully identified the silane AB110873. Conclusions Screening of virtual chemical structure libraries can facilitate the identification of xenobiotics inhibiting 11β-HSD2 and/or activating MR. Lasalocid and AB110873 belong to new classes of 11β-HSD2 inhibitors. The silane AB110873 represents to the best of our knowledge the first industrial chemical shown to activate MR. Furthermore, the MR pharmacophore can now be used for future screening purposes.


Methods | 2015

Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling

Anna Vuorinen; Daniela Schuster

Biological effects of small molecules in an organism result from favorable interactions between the molecules and their target proteins. These interactions depend on chemical functionalities, bonds, and their 3D-orientations towards each other. These 3D-arrangements of chemical functionalities that make a small molecule active towards its target can be described by pharmacophore models. In these models, chemical functionalities are represented as so-called features. Commonly, they are obtained either from a set of active compounds or directly from the observed protein-ligand interactions as present in X-ray crystal structures, NMR structures, or docking poses. In this review, we explain the basics of pharmacophore modeling including dataset generation, 3D-representations and conformational analysis of small molecules, pharmacophore model construction, model validation, and its benefits to virtual screening and other applications.


Molecular Informatics | 2014

Pharmacophore Model Refinement for 11β-Hydroxysteroid Dehydrogenase Inhibitors: Search for Modulators of Intracellular Glucocorticoid Concentrations.

Anna Vuorinen; Lyubomir G. Nashev; Alex Odermatt; Judith M. Rollinger; Daniela Schuster

11β‐Hydroxysteroid dehydrogenases (11β‐HSD) control the intracellular concentrations of glucocorticoids: 11β‐HSD1 converts the inactive cortisone to the active cortisol, and 11β‐HSD2 is responsible for the opposite reaction. Inhibition of 11β‐HSD1 is beneficial in the treatment of metabolic syndrome, whereas 11β‐HSD2 inhibition leads to hypertension. Therefore, 11β‐HSD1 inhibitors should be selective over 11β‐HSD2. To support drug discovery and toxicological studies, we have previously reported pharmacophore models for 11β‐HSD1 and 2 inhibition. These models represent the common chemical features of 11β‐HSD inhibitors, which were used as virtual screening filter. Since new inhibitors are constantly discovered, the quality of the pharmacophore models has to be evaluated in order to maintain a good predictive power. In this study, we report a systematic evaluation and refinement of our pharmacophore model collection. We employed our models for virtual screening, especially focusing on the 11β‐HSD2 inhibition. In total, 42 compounds were biologically evaluated and among these we discovered 17 11β‐HSD inhibitors that decreased the residual enzyme activity to 50% or less at the concentration of 20 µM. The experimental 11β‐HSD1 and 2 readouts from these compounds were used for further model refinement. Evaluation metrics were applied for a quantitative comparison of the old and newly generated models which resulted in a set of improved pharmacophore models offering reliable in silico tools for the identification of novel and selective 11β‐HSD inhibitors.


Drug Metabolism and Disposition | 2013

Formation of Threohydrobupropion from Bupropion Is Dependent on 11β-Hydroxysteroid Dehydrogenase 1

Arne Meyer; Anna Vuorinen; Agnieszka Zielinska; Petra Strajhar; Gareth G. Lavery; Daniela Schuster; Alex Odermatt

Bupropion is widely used for treatment of depression and as a smoking-cessation drug. Despite more than 20 years of therapeutic use, its metabolism is not fully understood. While CYP2B6 is known to form hydroxybupropion, the enzyme(s) generating erythro- and threohydrobupropion have long remained unclear. Previous experiments using microsomal preparations and the nonspecific inhibitor glycyrrhetinic acid suggested a role for 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in the formation of both erythro- and threohydrobupropion. 11β-HSD1 catalyzes the conversion of inactive glucocorticoids (cortisone, prednisone) to their active forms (cortisol, prednisolone). Moreover, it accepts several other substrates. Here, we used for the first time recombinant 11β-HSD1 to assess its role in the carbonyl reduction of bupropion. Furthermore, we applied human, rat, and mouse liver microsomes and a selective inhibitor to characterize species-specific differences and to estimate the relative contribution of 11β-HSD1 to bupropion metabolism. The results revealed 11β-HSD1 as the major enzyme responsible for threohydrobupropion formation. The reaction was stereoselective and no erythrohydrobupropion was formed. Human liver microsomes showed 10 and 80 times higher activity than rat and mouse liver microsomes, respectively. The formation of erythrohydrobupropion was not altered in experiments with microsomes from 11β-HSD1-deficient mice or upon incubation with 11β-HSD1 inhibitor, indicating the existence of another carbonyl reductase that generates erythrohydrobupropion. Molecular docking supported the experimental findings and suggested that 11β-HSD1 selectively converts R-bupropion to threohydrobupropion. Enzyme inhibition experiments suggested that exposure to bupropion is not likely to impair 11β-HSD1-dependent glucocorticoid activation but that pharmacological administration of cortisone or prednisone may inhibit 11β-HSD1-dependent bupropion metabolism.


Planta Medica | 2012

Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones.

Premysl Landa; Zsofia Kutil; Veronika Temml; Anna Vuorinen; Jan Malik; Marcela Dvorakova; Petr Marsik; Ladislav Kokoska; Marie Pribylova; Daniela Schuster; Tomas Vanek

In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC₅₀ values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs).


Toxicological Sciences | 2012

The anabolic androgenic steroid fluoxymesterone inhibits 11β-hydroxysteroid dehydrogenase 2-dependent glucocorticoid inactivation

Cornelia Fürstenberger; Anna Vuorinen; Thierry Da Cunha; Denise V. Kratschmar; Martial Saugy; Daniela Schuster; Alex Odermatt

Anabolic androgenic steroids (AAS) are testosterone derivatives used either clinically, in elite sports, or for body shaping with the goal to increase muscle size and strength. Clinically developed compounds and nonclinically tested designer steroids often marketed as food supplements are widely used. Despite the considerable evidence for various adverse effects of AAS use, the underlying molecular mechanisms are insufficiently understood. Here, we investigated whether some AAS, as a result of a lack of target selectivity, might inhibit 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2)-dependent inactivation of glucocorticoids. Using recombinant human 11β-HSD2, we observed inhibitory effects for several AAS. Whereas oxymetholone, oxymesterone, danazol, and testosterone showed medium inhibitory potential, fluoxymesterone was a potent inhibitor of human 11β-HSD2 (half-maximal inhibitory concentration [IC(50)] of 60-100nM in cell lysates; IC(50) of 160nM in intact SW-620, and 530nM in MCF-7 cells). Measurements with rat kidney microsomes and lysates of cells expressing recombinant mouse 11β-HSD2 revealed much weaker inhibition by the AAS tested, indicating that the adverse effects of AAS-dependent 11β-HSD2 inhibition cannot be investigated in rats and mice. Furthermore, we provide evidence that fluoxymesterone is metabolized to 11-oxofluoxymesterone by human 11β-HSD2. Structural modeling revealed similar binding modes for fluoxymesterone and cortisol, supporting a competitive mode of inhibition of 11β-HSD2-dependent cortisol oxidation by this AAS. No direct modulation of mineralocorticoid receptor (MR) function was observed. Thus, 11β-HSD2 inhibition by fluoxymesterone may cause cortisol-induced MR activation, thereby leading to electrolyte disturbances and contributing to the development of hypertension and cardiovascular disease.


Bioorganic & Medicinal Chemistry Letters | 2013

Synthesis and biological analysis of benzazol-2-yl piperazine sulfonamides as 11β-hydroxysteroid dehydrogenase 1 inhibitors

Sandra Hofer; Denise V. Kratschmar; Brigitte Schernthanner; Anna Vuorinen; Daniela Schuster; Alex Odermatt; Johnny Easmon

In the last decade the inhibition of the enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) emerged as a promising new strategy to treat diabetes and several metabolic syndrome phenotypes. Using a molecular modeling approach and classical bioisosteric studies, we discovered a new class of 11β-HSD1 inhibitors bearing an arylsulfonylpiperazine scaffold. Optimization of the initial lead resulted in compound 11 that selectively inhibits 11β-HSD1 (IC50=0.7 μM).


Biochemical Pharmacology | 2013

Carbonyl reduction of triadimefon by human and rodent 11β-hydroxysteroid dehydrogenase 1.

Arne Meyer; Anna Vuorinen; Agnieszka Zielinska; Thierry Da Cunha; Petra Strajhar; Gareth G. Lavery; Daniela Schuster; Alex Odermatt

11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the conversion of inactive 11-oxo glucocorticoids (endogenous cortisone, 11-dehydrocorticosterone and synthetic prednisone) to their potent 11β-hydroxyl forms (cortisol, corticosterone and prednisolone). Besides, 11β-HSD1 accepts several other substrates. Using rodent liver microsomes and the unspecific inhibitor glycyrrhetinic acid, it has been proposed earlier that 11β-HSD1 catalyzes the reversible conversion of the fungicide triadimefon to triadimenol. In the present study, recombinant human, rat and mouse enzymes together with a highly selective 11β-HSD1 inhibitor were applied to assess the role of 11β-HSD1 in the reduction of triadimefon and to uncover species-specific differences. To further demonstrate the role of 11β-HSD1 in the carbonyl reduction of triadimefon, microsomes from liver-specific 11β-HSD1-deficient mice were employed. Molecular docking was applied to investigate substrate binding. The results revealed important species differences and demonstrated the irreversible 11β-HSD1-dependent reduction of triadimefon. Human liver microsomes showed 4 and 8 times higher activity than rat and mouse liver microsomes. The apparent Vmax/Km of recombinant human 11β-HSD1 was 5 and 15 times higher than that of mouse and rat 11β-HSD1, respectively, indicating isoform-specific differences and different expression levels for the three species. Experiments using inhibitors and microsomes from 11β-HSD1-deficient mice indicated that 11β-HSD1 is the major if not only enzyme responsible for triadimenol formation. The IC50 values of triadimefon and triadimenol for cortisone reduction suggested that exposure to these xenobiotica unlikely impairs the 11β-HSD1-dependent glucocorticoid activation. However, elevated glucocorticoids during stress or upon pharmacological administration likely inhibit 11β-HSD1-dependent metabolism of triadimefon in humans.

Collaboration


Dive into the Anna Vuorinen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge