Anna Zamm
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Zamm.
NeuroImage | 2012
Psyche Loui; Anna Zamm; Gottfried Schlaug
Functional networks in the human brain give rise to complex cognitive and perceptual abilities. While the decrease of functional connectivity is linked to neurological and psychiatric disorders, less is known about the consequences of increased functional connectivity. One population that has exceptionally enhanced perceptual abilities is people with absolute pitch (AP) - an ability to categorize tones into pitch classes without reference. AP has been linked to exceptional talent as well as to psychiatric and neurological conditions. Here we show that AP possessors have increased functional activation during music listening, as well as increased degrees, clustering, and local efficiency of functional correlations, with the difference being highest around the left superior temporal gyrus. Our results provide the first evidence that increased functional connectivity in a small-world brain network is related to exceptional perceptual abilities in a healthy population.
NeuroImage | 2013
Anna Zamm; Gottfried Schlaug; David M. Eagleman; Psyche Loui
Synesthesia, a condition in which a stimulus in one sensory modality consistently and automatically triggers concurrent percepts in another modality, provides a window into the neural correlates of cross-modal associations. While research on grapheme-color synesthesia has provided evidence for both hyperconnectivity-hyperbinding and disinhibited feedback as potential underlying mechanisms, less research has explored the neuroanatomical basis of other forms of synesthesia. In the current study we investigated the white matter correlates of colored-music synesthesia. As these synesthetes report seeing colors upon hearing musical sounds, we hypothesized that they might show unique patterns of connectivity between visual and auditory association areas. We used diffusion tensor imaging to trace the white matter tracts in temporal and occipital lobe regions in 10 synesthetes and 10 matched non-synesthete controls. Results showed that synesthetes possessed hemispheric patterns of fractional anisotropy, an index of white matter integrity, in the inferior fronto-occipital fasciculus (IFOF), a major white matter pathway that connects visual and auditory association areas to frontal regions. Specifically, white matter integrity within the right IFOF was significantly greater in synesthetes than controls. Furthermore, white matter integrity in synesthetes was correlated with scores on audiovisual tests of the Synesthesia Battery, especially in white matter underlying the right fusiform gyrus. Our findings provide the first evidence of a white matter substrate of colored-music synesthesia, and suggest that enhanced white matter connectivity is involved in enhanced cross-modal associations.
Experimental Brain Research | 2015
Anna Zamm; Peter Q. Pfordresher; Caroline Palmer
Abstract Many behaviors require that individuals coordinate the timing of their actions with others. The current study investigated the role of two factors in temporal coordination of joint music performance: differences in partners’ spontaneous (uncued) rate and auditory feedback generated by oneself and one’s partner. Pianists performed melodies independently (in a Solo condition), and with a partner (in a duet condition), either at the same time as a partner (Unison), or at a temporal offset (Round), such that pianists heard their partner produce a serially shifted copy of their own sequence. Access to self-produced auditory information during duet performance was manipulated as well: Performers heard either full auditory feedback (Full), or only feedback from their partner (Other). Larger differences in partners’ spontaneous rates of Solo performances were associated with larger asynchronies (less effective synchronization) during duet performance. Auditory feedback also influenced temporal coordination of duet performance: Pianists were more coordinated (smaller tone onset asynchronies and more mutual adaptation) during duet performances when self-generated auditory feedback aligned with partner-generated feedback (Unison) than when it did not (Round). Removal of self-feedback disrupted coordination (larger tone onset asynchronies) during Round performances only. Together, findings suggest that differences in partners’ spontaneous rates of Solo performances, as well as differences in self- and partner-generated auditory feedback, influence temporal coordination of joint sensorimotor behaviors.
Journal of Experimental Psychology: Human Perception and Performance | 2016
Anna Zamm; Chelsea Wellman; Caroline Palmer
Interpersonal synchrony, the temporal coordination of actions between individuals, is fundamental to social behaviors from conversational speech to dance and music-making. Animal models indicate constraints on synchrony that arise from endogenous rhythms: Intrinsic periodic behaviors or processes that continue in the absence of change in external stimulus conditions. We report evidence for a direct causal link between endogenous rhythms and interpersonal synchrony in a music performance task, which places high demands on temporal coordination. We first establish that endogenous rhythms, measured by spontaneous rates of individual performance, are stable within individuals across stimulus materials, limb movements, and time points. We then test a causal link between endogenous rhythms and interpersonal synchrony by pairing each musician with a partner who is either matched or mismatched in spontaneous rate and by measuring their joint behavior up to 1 year later. Partners performed melodies together, using either the same or different hands. Partners who were matched for spontaneous rate showed greater interpersonal synchrony in joint performance than mismatched partners, regardless of hand used. Endogenous rhythms offer potential to predict optimal group membership in joint behaviors that require temporal coordination.
Journal of Biological Rhythms | 2018
Anna Zamm; Youyi Wang; Caroline Palmer
Many human action sequences, such as speaking and performing music, are inherently rhythmic: Sequence events are produced at quasi-regular temporal intervals. A wide range of interindividual variation has been noted in spontaneous production rates of these rhythmic action sequences. Dynamical theories of motor coordination suggest that individuals spontaneously produce rhythmic sequences at a natural frequency characterized by minimal energy expenditure and maximal temporal stability, relative to other frequencies. We tested this hypothesis by comparing the temporal variability with which musicians performed rhythmic melodies at their natural spontaneous rate with variability in their performances at faster and slower rates. Musicians’ temporal variability was lowest during performances at their spontaneous rate; in addition, performers’ tempo drift during trials at other rates showed bias toward their spontaneous rate. This study provides the first direct evidence that spontaneous rates of motor coordination represent optimally stable natural frequencies of endogenous rhythms.
Annals of the New York Academy of Sciences | 2018
Anna Zamm; Stefan Debener; Anna-Katharina R. Bauer; Martin G. Bleichner; Alexander P. Demos; Caroline Palmer
A major question facing cognitive neuroscience is measurement of interbrain synchrony between individuals performing joint actions. We describe the application of a novel method for measuring musicians’ interbrain synchrony: amplitude envelope correlations (AECs). Amplitude envelopes (AEs) reflect energy fluctuations in cortical oscillations over time; AE correlations measure the degree to which two envelope fluctuations are temporally correlated, such as cortical oscillations arising from two individuals performing a joint action. Wireless electroencephalography was recorded from two pianists performing a musical duet; an analysis pipeline is described for computing AEs of cortical oscillations at the duet performance frequency (number of tones produced per second) to test whether these oscillations reflect the temporal dynamics of partners’ performances. The pianists’ AE correlations were compared with correlations based on a distribution of AEs simulated from white noise signals using the same methods. The AE method was also applied to the temporal characteristics of the pianists’ performances, to show that the observed pairs AEs reflect the temporal dynamics of their performance. AE correlations offer a promising approach for assessing interbrain correspondences in cortical activity associated with performing joint tasks.
ICMPC : Proceedings / edited by Catherine Stevens ... [et al.]. International Conference on Music Perception and Cognition | 2012
Psyche Loui; Anna Zamm; Gottfried Schlaug
Brain Research | 2017
Anna Zamm; Caroline Palmer; Anna-Katharina R. Bauer; Martin G. Bleichner; Alexander P. Demos; Stefan Debener
Archive | 2018
Rebecca Scheurich; Anna Zamm; Caroline Palmer
Cognitive Science | 2018
Jonathan F. Kominsky; Anna Zamm; Frank C. Keil