Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annabel Whibley is active.

Publication


Featured researches published by Annabel Whibley.


Nature Genetics | 2009

A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation

Patrick Tarpey; Raffaella Smith; Erin Pleasance; Annabel Whibley; Sarah Edkins; Claire Hardy; Sarah O'Meara; Calli Latimer; Ed Dicks; Andrew Menzies; Phil Stephens; Matt Blow; Christopher Greenman; Yali Xue; Chris Tyler-Smith; Deborah Thompson; Kristian Gray; Jenny Andrews; Syd Barthorpe; Gemma Buck; Jennifer Cole; Rebecca Dunmore; David Jones; Mark Maddison; Tatiana Mironenko; Rachel Turner; Kelly Turrell; Jennifer Varian; Sofie West; Sara Widaa

Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disease-causing mutations thus far reported. The screen has discovered nine genes implicated in XLMR, including SYP, ZNF711 and CASK reported here, confirming the power of this strategy. The study has, however, also highlighted issues confronting whole-genome sequencing screens, including the observation that loss of function of 1% or more of X-chromosome genes is compatible with apparently normal existence.


American Journal of Human Genetics | 2008

SLC9A6 Mutations Cause X-Linked Mental Retardation, Microcephaly, Epilepsy, and Ataxia, a Phenotype Mimicking Angelman Syndrome

Gregor D. Gilfillan; Kaja Kristine Selmer; Ingrid Roxrud; Raffaella Smith; Mårten Kyllerman; Kristin Eiklid; Mette Kroken; Morten Mattingsdal; Thore Egeland; Harald Stenmark; Hans Sjøholm; Andres Server; Lena Samuelsson; Arnold Christianson; Patrick Tarpey; Annabel Whibley; Michael R. Stratton; P. Andrew Futreal; Jon Teague; Sarah Edkins; Jozef Gecz; Gillian Turner; F. Lucy Raymond; Charles E. Schwartz; Roger E. Stevenson; Dag E. Undlien; Petter Strømme

Linkage analysis and DNA sequencing in a family exhibiting an X-linked mental retardation (XLMR) syndrome, characterized by microcephaly, epilepsy, ataxia, and absent speech and resembling Angelman syndrome, identified a deletion in the SLC9A6 gene encoding the Na(+)/H(+) exchanger NHE6. Subsequently, other mutations were found in a male with mental retardation (MR) who had been investigated for Angelman syndrome and in two XLMR families with epilepsy and ataxia, including the family designated as having Christianson syndrome. Therefore, mutations in SLC9A6 cause X-linked mental retardation. Additionally, males with findings suggestive of unexplained Angelman syndrome should be considered as potential candidates for SLC9A6 mutations.


American Journal of Human Genetics | 2008

Submicroscopic Duplications of the Hydroxysteroid Dehydrogenase HSD17B10 and the E3 Ubiquitin Ligase HUWE1 Are Associated with Mental Retardation

Guy Froyen; Mark Corbett; Joke Vandewalle; Irma Järvelä; O Lawrence; Cliff Meldrum; Marijke Bauters; Karen Govaerts; Lucianne Vandeleur; Hilde Van Esch; Jamel Chelly; Damien Sanlaville; Hans van Bokhoven; Hans-Hilger Ropers; Frédéric Laumonnier; Enzo Ranieri; Charles E. Schwartz; Fatima Abidi; Patrick Tarpey; P. Andrew Futreal; Annabel Whibley; F. Lucy Raymond; Michael R. Stratton; Jean Pierre Fryns; Rodney J. Scott; Maarit Peippo; Marjatta Sipponen; Michael Partington; David Mowat; Michael Field

Submicroscopic copy-number imbalances contribute significantly to the genetic etiology of human disease. Here, we report a novel microduplication hot spot at Xp11.22 identified in six unrelated families with predominantly nonsyndromic XLMR. All duplications segregate with the disease, including the large families MRX17 and MRX31. The minimal, commonly duplicated region contains three genes: RIBC1, HSD17B10, and HUWE1. RIBC1 could be excluded on the basis of its absence of expression in the brain and because it escapes X inactivation in females. For the other genes, expression array and quantitative PCR analysis in patient cell lines compared to controls showed a significant upregulation of HSD17B10 and HUWE1 as well as several important genes in their molecular pathways. Loss-of-function mutations of HSD17B10 have previously been associated with progressive neurological disease and XLMR. The E3 ubiquitin ligase HUWE1 has been implicated in TP53-associated regulation of the neuronal cell cycle. Here, we also report segregating sequence changes of highly conserved residues in HUWE1 in three XLMR families; these changes are possibly associated with the phenotype. Our findings demonstrate that an increased gene dosage of HSD17B10, HUWE1, or both contribute to the etiology of XLMR and suggest that point mutations in HUWE1 are associated with this disease too.


Science Translational Medicine | 2010

Disruption at the PTCHD1 locus on Xp22.11 in autism spectrum disorder and intellectual disability

Abdul Noor; Annabel Whibley; Christian R. Marshall; Peter J. Gianakopoulos; Amélie Piton; Andrew R. Carson; Marija Orlic-Milacic; Anath C. Lionel; Daisuke Sato; Dalila Pinto; Irene Drmic; Carolyn Noakes; Lili Senman; Xiaoyun Zhang; Rong Mo; Julie Gauthier; Jennifer Crosbie; Alistair T. Pagnamenta; Jeffrey Munson; Annette Estes; Andreas Fiebig; Andre Franke; Stefan Schreiber; Alexandre F.R. Stewart; Robert Roberts; Ruth McPherson; Stephen J. Guter; Edwin H. Cook; Geraldine Dawson; Gerard D. Schellenberg

Mutations of the X-linked gene PTCHD1 are associated with autism spectrum disorders and intellectual disability. A Patch in the Fabric of Autism What causes autism? This disabling disorder is characterized by severe language and social impairment and is now included under the umbrella term “autism spectrum disorder” (ASD), which also includes milder deficits in communication and social development. Numerous theories have been advanced as to its causes. These have ranged from discredited concepts—“refrigerator” mothers and vaccines—to the modern idea of gene-environment interactions. Although no one gene simply explains the predisposition of patients for ASD, these disorders are wellknown to have a strong genetic component. Here, Noor et al. report the results of genetic analysis in thousands of patients and control subjects: Mutations at the PTCHD1 (patched-related gene) locus are associated with the inheritance of ASD and with intellectual disability in a small fraction of cases. In this study, the authors analyzed the PTCHD1 gene from 1896 patients with ASD and 246 with intellectual disability, and compared these to more than 10,000 control individuals, and found mutations in various parts of this gene in 25 affected individuals in 20 different families, but not in any of the controls. Some patients had large deletions, in one case spanning the entire gene, and in others the culprit was a missense mutation. A result of this gene’s location on the X chromosome, the affected patients were almost all male, and most had unaffected mothers and other female relatives. The authors also present evidence that the PTCHD1 gene may be part of the Hedgehog signaling pathway, which is important in embryonic development. Autism and intellectual disability are not straightforward disorders that can be attributed to mutations in a single gene. Even when candidate genes such as PTCHD1 are known, differences in the gene sequence do not perfectly correlate with phenotype, because there are many as yet undefined additional genes and environmental influences that dictate the ultimate characteristics of the person. Identifying some of these genes, as Noor et al. have done in this study, allows a better understanding of the disorder and the development of ways to compensate for its disabilities. Autism is a common neurodevelopmental disorder with a complex mode of inheritance. It is one of the most highly heritable of the complex disorders, although the underlying genetic factors remain largely unknown. Here, we report mutations in the X-chromosome PTCHD1 (patched-related) gene in seven families with autism spectrum disorder (ASD) and in three families with intellectual disability. A 167-kilobase microdeletion spanning exon 1 was found in two brothers, one with ASD and the other with a learning disability and ASD features; a 90-kilobase microdeletion spanning the entire gene was found in three males with intellectual disability in a second family. In 900 probands with ASD and 208 male probands with intellectual disability, we identified seven different missense changes (in eight male probands) that were inherited from unaffected mothers and not found in controls. Two of the ASD individuals with missense changes also carried a de novo deletion at another ASD susceptibility locus (DPYD and DPP6), suggesting complex genetic contributions. In additional males with ASD, we identified deletions in the 5′ flanking region of PTCHD1 that disrupted a complex noncoding RNA and potential regulatory elements; equivalent changes were not found in male control individuals. Thus, our systematic screen of PTCHD1 and its 5′ flanking regions suggests that this locus is involved in ~1% of individuals with ASD and intellectual disability.


American Journal of Human Genetics | 2010

Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual Disability

Annabel Whibley; Vincent Plagnol; Patrick Tarpey; Fatima Abidi; Tod Fullston; Maja K. Choma; Catherine A. Boucher; Lorraine Shepherd; Lionel Willatt; Georgina Parkin; Raffaella Smith; P. Andrew Futreal; Marie Shaw; Jackie Boyle; Andrea Licata; Cindy Skinner; Roger E. Stevenson; Gillian Turner; Michael Field; Anna Hackett; Charles E. Schwartz; Jozef Gecz; Michael R. Stratton; F. Lucy Raymond

Copy number variants and indels in 251 families with evidence of X-linked intellectual disability (XLID) were investigated by array comparative genomic hybridization on a high-density oligonucleotide X chromosome array platform. We identified pathogenic copy number variants in 10% of families, with mutations ranging from 2 kb to 11 Mb in size. The challenge of assessing causality was facilitated by prior knowledge of XLID-associated genes and the ability to test for cosegregation of variants with disease through extended pedigrees. Fine-scale analysis of rare variants in XLID families leads us to propose four additional genes, PTCHD1, WDR13, FAAH2, and GSPT2, as candidates for XLID causation and the identification of further deletions and duplications affecting X chromosome genes but without apparent disease consequences. Breakpoints of pathogenic variants were characterized to provide insight into the underlying mutational mechanisms and indicated a predominance of mitotic rather than meiotic events. By effectively bridging the gap between karyotype-level investigations and X chromosome exon resequencing, this study informs discussion of alternative mutational mechanisms, such as noncoding variants and non-X-linked disease, which might explain the shortfall of mutation yield in the well-characterized International Genetics of Learning Disability (IGOLD) cohort, where currently disease remains unexplained in two-thirds of families.


European Journal of Human Genetics | 2010

CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes

Anna Hackett; Patrick Tarpey; Andrea Licata; James J. Cox; Annabel Whibley; Jackie Boyle; Carolyn Rogers; John Grigg; Michael Partington; Roger E. Stevenson; John Tolmie; John R.W. Yates; Gillian Turner; Meredith Wilson; Andrew Futreal; Mark Corbett; Marie Shaw; Jozef Gecz; F. Lucy Raymond; Michael R. Stratton; Charles E. Schwartz; Fatima Abidi

Mutations of the calcium/calmodulin-dependent serine protein kinase (CASK) gene have recently been associated with X-linked mental retardation (XLMR) with microcephaly, optic atrophy and brainstem and cerebellar hypoplasia, as well as with an X-linked syndrome having some FG-like features. Our group has recently identified four male probands from 358 probable XLMR families with missense mutations (p.Y268H, p.P396S, p.D710G and p.W919R) in the CASK gene. Congenital nystagmus, a rare and striking feature, was present in two of these families. We screened a further 45 probands with either nystagmus or microcephaly and mental retardation (MR), and identified two further mutations, a missense mutation (p.Y728C) and a splice mutation (c.2521-2A>T) in two small families with nystagmus and MR. Detailed clinical examinations of all six families, including an ophthalmological review in four families, were undertaken to further characterise the phenotype. We report on the clinical features of 24 individuals, mostly male, from six families with CASK mutations. The phenotype was variable, ranging from non-syndromic mild MR to severe MR associated with microcephaly and dysmorphic facial features. Carrier females were variably affected. Congenital nystagmus was found in members of four of the families. Our findings reinforce the CASK gene as a relatively frequent cause of XLMR in females and males. We further define the phenotypic spectrum and demonstrate that affected males with missense mutations or in-frame deletions in CASK are frequently associated with congenital nystagmus and XLMR, a striking feature not previously reported.


Human Molecular Genetics | 2010

Mutations in Cullin 4B result in a human syndrome associated with increased camptothecin-induced topoisomerase I-dependent DNA breaks

Claudia Kerzendorfer; Annabel Whibley; Gillian Carpenter; Emily Outwin; Shih-Chieh Chiang; Gillian Turner; Charles E. Schwartz; Sherif F. El-Khamisy; F. Lucy Raymond; Mark O'Driscoll

CUL4A and B encode subunits of E3-ubiquitin ligases implicated in diverse processes including nucleotide excision repair, regulating gene expression and controlling DNA replication fork licensing. But, the functional distinction between CUL4A and CUL4B, if any, is unclear. Recently, mutations in CUL4B were identified in humans associated with mental retardation, relative macrocephaly, tremor and a peripheral neuropathy. Cells from these patients offer a unique system to help define at the molecular level the consequences of defective CUL4B specifically. We show that these patient-derived cells exhibit sensitivity to camptothecin (CPT), impaired CPT-induced topoisomerase I (Topo I) degradation and ubiquitination, thereby suggesting Topo I to be a novel Cul4-dependent substrate. Consistent with this, we also find that these cells exhibit increased levels of CPT-induced DNA breaks. Furthermore, over-expression of known CUL4-dependent substrates including Cdt1 and p21 appear to be a feature of these patient-derived cells. Collectively, our findings highlight the interplay between CUL4A and CUL4B and provide insight into the pathogenesis of CUL4B-deficiency in humans.


European Journal of Human Genetics | 2010

Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements

Annabel Whibley; Jill Urquhart; Jonathan Dore; Lionel Willatt; Georgina Parkin; Lorraine Gaunt; Graeme C.M. Black; Dian Donnai; F. Lucy Raymond

Monoamine oxidases (MAO-A and MAO-B) have a key role in the degradation of amine neurotransmitters, such as dopamine, norepinephrine and serotonin. We identified an inherited 240u2009kb deletion on Xp11.3–p11.4, which encompasses both monoamine oxidase genes but, unlike other published reports, does not affect the adjacent Norrie disease gene (NDP). The brothers who inherited the deletion, and thus have no monoamine oxidase function, presented with severe developmental delay, intermittent hypotonia and stereotypical hand movements. The clinical features accord with published reports of larger microdeletions and selective MAO-A and MAO-B deficiencies in humans and mouse models and suggest considerable functional compensation between MAO-A and MAO-B under normal conditions.


Human Molecular Genetics | 2009

Lessons learnt from large-scale exon re-sequencing of the X chromosome

F. Lucy Raymond; Annabel Whibley; Michael R. Stratton; Jozef Gecz

A candidate gene approach to identifying novel causes of disease is concept-limiting and in the new era of high throughput sequencing there is now no need to restrict the experiment to a few interesting genes. We have recently completed a large-scale exon re-sequencing project using Sanger sequencing technology to analyse approximately 1 Mb of coding sequence of the X chromosome in probands from >200 families with various forms of intellectual disability. We review the lessons learnt from this experience. Comparing large data sets will certainly reveal pathogenic mutations in genes that were not possible to identify previously. However, the task of distinguishing pathogenic mutations from rare sequence variants is not easy and is the most substantial challenge to the next decade. High-throughput technology has the attraction of being cheap, fast and comprehensive but for projects that require detailed coverage of a genomic region at an exhaustive level they may require a combination of large-scale with a small-scale follow-up of difficult regions to sequence. The number of rare truncating variants present in coding regions of the X chromosome that are not pathogenic was 1%. The importance of the quality of the starting material both clinically and molecularly and the number of sequence variants both rare and common that any one individual has across their coding sequence is discussed.


American Journal of Medical Genetics Part A | 2010

Recurrent Deletion of ZNF630 at Xp11.23 Is Not Associated With Mental Retardation

Darien Lugtenberg; Luiz Zangrande-Vieira; Maria Kirchhoff; Annabel Whibley; Astrid R. Oudakker; Susanne Kjaergaard; Angela M. Vianna-Morgante; Tjitske Kleefstra; Mariken Ruiter; Fernanda Sarquis Jehee; Reinhard Ullmann; Charles E. Schwartz; Michael R. Stratton; F. Lucy Raymond; Joris A. Veltman; Terry Vrijenhoek; Ralph Pfundt; Janneke H M Schuurs-Hoeijmakers; Jayne Y. Hehir-Kwa; Guido Froyen; Jamel Chelly; Hans-Hilger Ropers; Claude Moraine; Jozef Gecz; Jeroen Knijnenburg; Sarina G. Kant; B.C.J. Hamel; Carla Rosenberg; Hans van Bokhoven; Arjan P.M. de Brouwer

ZNF630 is a member of the primate‐specific Xp11 zinc finger gene cluster that consists of six closely related genes, of which ZNF41, ZNF81, and ZNF674 have been shown to be involved in mental retardation. This suggests that mutations of ZNF630 might influence cognitive function. Here, we detected 12 ZNF630 deletions in a total of 1,562 male patients with mental retardation from Brazil, USA, Australia, and Europe. The breakpoints were analyzed in 10 families, and in all cases they were located within two segmental duplications that share more than 99% sequence identity, indicating that the deletions resulted from non‐allelic homologous recombination. In 2,121 healthy male controls, 10 ZNF630 deletions were identified. In total, there was a 1.6‐fold higher frequency of this deletion in males with mental retardation as compared to controls, but this increase was not statistically significant (P‐valueu2009=u20090.174). Conversely, a 1.9‐fold lower frequency of ZNF630 duplications was observed in patients, which was not significant either (P‐valueu2009=u20090.163). These data do not show that ZNF630 deletions or duplications are associated with mental retardation.

Collaboration


Dive into the Annabel Whibley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles E. Schwartz

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar

Michael R. Stratton

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Patrick Tarpey

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Jozef Gecz

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Fatima Abidi

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger E. Stevenson

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Anna Hackett

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge