Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annalisa Astolfi is active.

Publication


Featured researches published by Annalisa Astolfi.


Blood | 2009

Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP)

Ilaria Iacobucci; Clelia Tiziana Storlazzi; Daniela Cilloni; Annalisa Lonetti; Emanuela Ottaviani; Simona Soverini; Annalisa Astolfi; Sabina Chiaretti; Antonella Vitale; Francesca Messa; Luciana Impera; Carmen Baldazzi; Pietro D'Addabbo; Cristina Papayannidis; Angelo Lonoce; Sabrina Colarossi; Marco Vignetti; Pier Paolo Piccaluga; Stefania Paolini; Domenico Russo; Fabrizio Pane; Giuseppe Saglio; Michele Baccarani; Robin Foà; Giovanni Martinelli

The BCR-ABL1 fusion gene defines the subgroup of acute lymphoblastic leukemia (ALL) with the worst clinical prognosis. To identify oncogenic lesions that combine with BCR-ABL1 to cause ALL, we used Affymetrix Genome-Wide Human SNP arrays (250K NspI and SNP 6.0), fluorescence in situ hybridization, and genomic polymerase chain reaction to study 106 cases of adult BCR-ABL1-positive ALL. The most frequent somatic copy number alteration was a focal deletion on 7p12 of IKZF1, which encodes the transcription factor Ikaros and was identified in 80 (75%) of 106 patients. Different patterns of deletions occurred, but the most frequent were those characterized by a loss of exons 4 through 7 (Delta4-7) and by removal of exons 2 through 7 (Delta2-7). A variable number of nucleotides (patient specific) were inserted at the conjunction and maintained with fidelity at the time of relapse. The extent of the Delta4-7 deletion correlated with the expression of a dominant-negative isoform with cytoplasmic localization and oncogenic activity, whereas the Delta2-7 deletion resulted in a transcript lacking the translation start site. The IKZF1 deletion also was identified in the progression of chronic myeloid leukemia to lymphoid blast crisis (66%) but never in myeloid blast crisis or chronic-phase chronic myeloid leukemia or in patients with acute myeloid leukemia. Known DNA sequences and structural features were mapped along the breakpoint cluster regions, including heptamer recombination signal sequences recognized by RAG enzymes during V(D)J recombination, suggesting that IKZF1 deletions could arise from aberrant RAG-mediated recombination.


Cancer Research | 2009

Dual Inhibition of Class IA Phosphatidylinositol 3-Kinase and Mammalian Target of Rapamycin as a New Therapeutic Option for T-Cell Acute Lymphoblastic Leukemia

Francesca Chiarini; Federica Falà; Pier Luigi Tazzari; Francesca Ricci; Annalisa Astolfi; Andrea Pession; Pasqualepaolo Pagliaro; James A. McCubrey; Alberto M. Martelli

Recent investigations have documented that constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it strongly influences growth and survival. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signaling in T-ALL is limited and it is not clear whether it could be an effective target for innovative therapeutic strategies. Here, we have analyzed the therapeutic potential of the dual PI3K/mTOR inhibitor PI-103, a small synthetic molecule of the pyridofuropyrimidine class, on both T-ALL cell lines and patient samples, which displayed constitutive activation of PI3K/Akt/mTOR signaling. PI-103 inhibited the growth of T-ALL cells, including 170-kDa P-glycoprotein overexpressing cells. PI-103 cytotoxicity was independent of p53 gene status. PI-103 was more potent than inhibitors that are selective only for PI3K (Wortmannin, LY294002) or for mTOR (rapamycin). PI-103 induced G(0)-G(1) phase cell cycle arrest and apoptosis, which was characterized by activation of caspase-3 and caspase-9. PI-103 caused Akt dephosphorylation, accompanied by dephosphorylation of the Akt downstream target, glycogen synthase kinase-3beta. Also, mTOR downstream targets were dephosphorylated in response to PI-103, including p70S6 kinase, ribosomal S6 protein, and 4E-BP1. PI-103 strongly synergized with vincristine. These findings indicate that multitargeted therapy toward PI3K and mTOR alone or with existing drugs may serve as an efficient treatment toward T-ALL cells, which require up-regulation of PI3K/Akt/mTOR signaling for their survival and growth.


Journal of the National Cancer Institute | 2011

SDHA Loss-of-Function Mutations in KIT – PDGFRA Wild-Type Gastrointestinal Stromal Tumors Identified by Massively Parallel Sequencing

Maria Abbondanza Pantaleo; Annalisa Astolfi; Valentina Indio; Richard A. Moore; Nina Thiessen; Michael C. Heinrich; Chiara Gnocchi; Donatella Santini; Fausto Catena; Serena Formica; Pier Luigi Martelli; Rita Casadio; Andrea Pession; Guido Biasco

Approximately 10%-15% of gastrointestinal stromal tumors (GISTs) in adults do not harbor any mutation in the KIT or PDGFRA genes (ie, KIT/PDGFRA wild-type GISTs). Recently, mutations in SDHB and SDHC (which encode succinate dehydrogenase subunits B and C, respectively) but not in SDHA and SDHD (which encode subunits A and D, respectively) were identified in KIT/PDGFRA wild-type GISTs. To search for novel pathogenic mutations, we sequenced the tumor transcriptome of two young adult patients who developed sporadic KIT/PDGFRA wild-type GISTs by using a massively parallel sequencing approach. The only variants identified as disease related by computational analysis were in SDHA. One patient carried the homozygous nonsense mutation p.Ser384X, the other patient was a compound heterozygote harboring a p.Arg31X nonsense mutation and a p.Arg589Trp missense mutation. The heterozygous nonsense mutations in both patients were present in germline DNA isolated from peripheral blood. Protein structure analysis indicates that all three mutations lead to functional inactivation of the protein. This is the first report, to our knowle dge, that identifies SDHA inactivation as a common oncogenic event in GISTs that lack a mutation in KIT and PDGFRA.


American Journal of Pathology | 2002

The Expression of ccn3(nov) Gene in Musculoskeletal Tumors

Maria Cristina Manara; Bernard Perbal; Stefania Benini; Rosaria Strammiello; Vanessa Cerisano; Stefania Perdichizzi; Massimo Serra; Annalisa Astolfi; Franco Bertoni; Jennifer Alami; Herman Yeger; Piero Picci; Katia Scotlandi

The CCN3(NOV) protein belongs to the CCN [cysteine-rich CYR61, connective tissue growth factor (CTGF), nephroblastoma overexpressed gene (Nov)] family of growth regulators, sharing a strikingly conserved multimodular organization but exhibiting distinctive functional features. Although previous studies have revealed an expression of CCN3 protein in several normal tissues, including kidney, nervous system, lung, muscle, and cartilage, less is known about its expression in tumors. In this study, we analyzed the expression of CCN3 in musculoskeletal tumors, using a panel of human cell lines and tissue samples. An association between CCN3 expression and tumor differentiation was observed in rhabdomyosarcoma and cartilage tumors, whereas, in Ewings sarcoma, the expression of this protein seemed to be associated with a higher risk to develop metastases. CCN3 expression was found in 15 of 45 Ewings sarcoma tissue samples. In particular, we did not observe any expression of CCN3 in the 15 primary tumors that did not develop metastases. In contrast, 15 of the 30 primary tumors that developed lung and/or bone metachronous metastases showed a high expression of the protein (P < 0.001, Fishers test). Our studies indicate that CCN3 is generally expressed in the cells of the musculoskeletal system. This protein may play a role both in normal and pathological conditions. However, the regulation of CCN3 expression varies in the different neoplasms and depends on the type of cells. Thus, as reported for other CCN genes, the biological properties and regulation of expression of CCN3 are dependent on the cellular context and the nature of the cells in which it is produced. Further studies will help to clarify the biological role of this protein in musculoskeletal neoplasms.


Journal of Immunology | 2004

Immunoprevention of Mammary Carcinoma in HER-2/neu Transgenic Mice Is IFN-γ and B Cell Dependent

Patrizia Nanni; Lorena Landuzzi; Giordano Nicoletti; Carla De Giovanni; Ilaria Rossi; Stefania Croci; Annalisa Astolfi; Manuela Iezzi; Emma Di Carlo; Piero Musiani; Guido Forni; Pier Luigi Lollini

A vaccine combining IL-12 and allogeneic mammary carcinoma cells expressing p185neu completely prevents tumor onset in HER-2/neu transgenic BALB/c mice (NeuT mice). The immune protection elicited was independent from CTL activity. We now formally prove that tumor prevention is mainly based on the production of anti-p185neu Abs. In the present studies, NeuT mice were crossed with knockout mice lacking IFN-γ production (IFN-γ−/−) or with B cell-deficient mice (μMT). Vaccination did not protect NeuT-IFN-γ−/− mice, thus confirming a central role of IFN-γ. The block of Ab production in NeuT-μMT mice was incomplete. About one third of NeuT-μMT mice failed to produce Abs and displayed a rapid tumor onset. By contrast, those NeuT-μMT mice that responded to the vaccine with a robust production of anti-p185neu Ab displayed a markedly delayed tumor onset. In these NeuT-μMT mice, the vaccine induced a lower level of IgG2a and IgG3 and a higher level of IgG2b than in NeuT mice. Moreover, NeuT-μMT mice failed to produce anti-MHC class I Abs in response to allogeneic H-2q molecules present in the cell vaccine. These findings show that inhibition of HER-2/neu carcinogenesis depends on cytokines and specific Abs, and that a highly effective vaccine can rescue Ab production even in B cell-deficient mice.


Cancer Research | 2004

Inhibition of Connective Tissue Growth Factor (CTGF/CCN2) Expression Decreases the Survival and Myogenic Differentiation of Human Rhabdomyosarcoma Cells

Stefania Croci; Lorena Landuzzi; Annalisa Astolfi; Giordano Nicoletti; Angelo Rosolen; F. Sartori; Matilde Y. Follo; Noelynn Oliver; Carla De Giovanni; Patrizia Nanni; Pier Luigi Lollini

Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.


Cancer Treatment Reviews | 2009

Gene expression profiling in colorectal cancer using microarray technologies: results and perspectives.

Margherita Nannini; Maria Abbondanza Pantaleo; Alessandra Maleddu; Annalisa Astolfi; Serena Formica; Guido Biasco

Nowadays molecular biology represents one of the most interesting topics in medical oncology, because it provides a global and detailed view on the molecular changes involved in tumour progression, leading to a better understanding of the carcinogenesis process, to discovering new prognostic markers and novel therapeutic targets. The gene expression profiling analysis with microarray technology has shown a great potential in cancer research and in medical oncology, mapping simultaneously the expression of thousands of genes in a single tumour sample and giving a measurement of articulated genes expression patterns. Colorectal cancer represents a wide and exciting area of research for molecular biology, due to the growing need of a molecular classification as well as prognostic and predictive molecular factors that may guide oncologists in patients clinical management. The aim of this review is to analyze the state of art of gene expression profile in colorectal cancer using microarrays technologies and to explore some perspectives in this research field.


Cancer Research | 2004

Immunoprevention of HER-2/neu Transgenic Mammary Carcinoma through an Interleukin 12-Engineered Allogeneic Cell Vaccine

Carla De Giovanni; Giordano Nicoletti; Lorena Landuzzi; Annalisa Astolfi; Stefania Croci; Alberto Comes; Silvano Ferrini; Raffaella Meazza; Manuela Iezzi; Emma Di Carlo; Piero Musiani; Federica Cavallo; Patrizia Nanni; Pier Luigi Lollini

This study evaluated the ability of cytokine-engineered allogeneic (H-2q) HER-2/neu-positive cells to prevent tumor development in mammary cancer-prone virgin female BALB/c (H-2d) mice transgenic for the transforming rat HER-2/neu oncogene (BALB-neuT mice). Repeated vaccinations with cells engineered to release interleukin (IL)-2, IL-12, IL-15, or IFN-γ showed that IL-12-engineered cell vaccines had the most powerful immunopreventive activity, with >80% of 1-year-old BALB-neuT mice free of tumors. On the contrary all of the untreated mice and all of the mice vaccinated with IL-12-engineered cells lacking either HER-2/neu or allogeneic antigens developed mammary carcinomas within 22 or 33 weeks, respectively. Whole mount, histology, immunohistochemistry, and gene expression profile analysis showed that vaccination with IL-12-engineered cells maintained 26-week mammary glands free of neoplastic growth, with a gene expression profile that clustered with that of untreated preneoplastic glands. The IL-12-engineered cell vaccine elicited a high production of IFN-γ and IL-4 and a strong anti-HER-2/neu antibody response. Immune protection was lost or markedly impaired in BALB-neuT mice lacking IFN-γ or antibody production, respectively. The protection afforded by the IL-12-engineered cell vaccine was equal to that provided by the systemic administration of recombinant IL-12 in combination with HER-2/neu H-2q cell vaccine. However, IL-12-engineered cell vaccine induced much lower circulating IL-12 and IFN-γ, and therefore lower potential side effects and systemic toxicity.


Journal of Clinical Investigation | 2010

CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis.

Anna Rocchi; Maria Cristina Manara; Marika Sciandra; Diana Zambelli; Filippo Nardi; Giordano Nicoletti; Cecilia Garofalo; Stefania Meschini; Annalisa Astolfi; Mario P. Colombo; Stephen L. Lessnick; Piero Picci; Katia Scotlandi

Ewing sarcoma (EWS) is an aggressive bone tumor of uncertain cellular origin. CD99 is a membrane protein that is expressed in most cases of EWS, although its function in the disease is unknown. Here we have shown that endogenous CD99 expression modulates EWS tumor differentiation and malignancy. We determined that knocking down CD99 expression in human EWS cell lines reduced their ability to form tumors and bone metastases when xenografted into immunodeficient mice and diminished their tumorigenic characteristics in vitro. Further, reduction of CD99 expression resulted in neurite outgrowth and increased expression of beta-III tubulin and markers of neural differentiation. Analysis of a panel of human EWS cells revealed an inverse correlation between CD99 and H-neurofilament expression, as well as an inverse correlation between neural differentiation and oncogenic transformation. As knockdown of CD99 also led to an increase in phosphorylation of ERK1/2, we suggest that the CD99-mediated prevention of neural differentiation of EWS occurs through MAPK pathway modulation. Together, these data indicate a new role for CD99 in preventing neural differentiation of EWS cells and suggest that blockade of CD99 or its downstream molecular pathway may be a new therapeutic approach for EWS.


Blood | 2011

Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes

Pier Paolo Piccaluga; Giulia De Falco; Manjunath Kustagi; Anna Gazzola; Claudio Agostinelli; Claudio Tripodo; Eleonora Leucci; Anna Onnis; Annalisa Astolfi; Maria Rosaria Sapienza; Cristiana Bellan; Stefano Lazzi; Lynnette K Tumwine; Michael Mawanda; Martin Ogwang; Valeria Calbi; Serena Formica; Stefano Pileri; Lorenzo Leoncini

Burkitt lymphoma (BL) is classified into 3 clinical subsets: endemic, sporadic, and immunodeficiency-associated BL. So far, possible differences in their gene expression profiles (GEPs) have not been investigated. We studied GEPs of BL subtypes, other B-cell lymphomas, and B lymphocytes; first, we found that BL is a unique molecular entity, distinct from other B-cell malignancies. Indeed, by unsupervised analysis all BLs clearly clustered apart of other lymphomas. Second, we found that BL subtypes presented slight differences in GEPs. Particularly, they differed for genes involved in cell cycle control, B-cell receptor signaling, and tumor necrosis factor/nuclear factor κB pathways. Notably, by reverse engineering, we found that endemic and sporadic BLs diverged for genes dependent on RBL2 activity. Furthermore, we found that all BLs were intimately related to germinal center cells, differing from them for molecules involved in cell proliferation, immune response, and signal transduction. Finally, to validate GEP, we applied immunohistochemistry to a large panel of cases and showed that RBL2 can cooperate with MYC in inducing a neoplastic phenotype in vitro and in vivo. In conclusion, our study provided substantial insights on the pathobiology of BLs, by offering novel evidences that may be relevant for its classification and possibly future treatment.

Collaboration


Dive into the Annalisa Astolfi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge