Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annalisa Bucchi is active.

Publication


Featured researches published by Annalisa Bucchi.


The Journal of General Physiology | 2002

Current-dependent Block of Rabbit Sino-Atrial Node I f Channels by Ivabradine

Annalisa Bucchi; Mirko Baruscotti; Dario DiFrancesco

“Funny” (f-) channels have a key role in generation of spontaneous activity of pacemaker cells and mediate autonomic control of cardiac rate; f-channels and the related neuronal h-channels are composed of hyperpolarization-activated, cyclic nucleotide–gated (HCN) channel subunits. We have investigated the block of f-channels of rabbit cardiac sino-atrial node cells by ivabradine, a novel heart rate-reducing agent. Ivabradine is an open-channel blocker; however, block is exerted preferentially when channels deactivate on depolarization, and is relieved by long hyperpolarizing steps. These features give rise to use-dependent behavior. In this, the action of ivabradine on f-channels is similar to that reported of other rate-reducing agents such as UL-FS49 and ZD7288. However, other features of ivabradine-induced block are peculiar and do not comply with the hypothesis that the voltage-dependence of block is entirely attributable to either the sensitivity of ivabradine-charged molecules to the electrical field in the channel pore, or to differential affinity to different channel states, as has been proposed for UL-FS49 (DiFrancesco, D. 1994. Pflugers Arch. 427:64–70) and ZD7288 (Shin, S.K., B.S. Rotheberg, and G. Yellen. 2001. J. Gen. Physiol. 117:91–101), respectively. Experiments where current flows through channels is modified without changing membrane voltage reveal that the ivabradine block depends on the current driving force, rather than voltage alone, a feature typical of block induced in inwardly rectifying K+ channels by intracellular cations. Bound drug molecules do not detach from the binding site in the absence of inward current through channels, even if channels are open and the drug is therefore not “trapped” by closed gates. Our data suggest that permeation through f-channel pores occurs according to a multiion, single-file mechanism, and that block/unblock by ivabradine is coupled to ionic flow. The use-dependence resulting from specific features of If block by ivabradine amplifies its rate-reducing ability at high spontaneous rates and may be useful to clinical applications.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4

Mirko Baruscotti; Annalisa Bucchi; Carlo Viscomi; Giacomo Mandelli; Giacomo Consalez; Tomaso Gnecchi-Rusconi; Nicola Montano; Karina Rabello Casali; Stefano Micheloni; Andrea Barbuti; Dario DiFrancesco

Cardiac pacemaking generation and modulation rely on the coordinated activity of several processes. Although a wealth of evidence indicates a relevant role of the If (“funny,” or pacemaker) current, whose molecular constituents are the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels and particularly HCN4, work with mice where Hcn genes were knocked out, or functionally modified, has challenged this view. However, no previous studies used a cardiac-specific promoter to induce HCN4 ablation in adult mice. We report here that, in an inducible and cardiac-specific HCN4 knockout (ciHCN4-KO) mouse model, ablation of HCN4 consistently leads to progressive development of severe bradycardia (∼50% reduction of original rate) and AV block, eventually leading to heart arrest and death in about 5 d. In vitro analysis of sinoatrial node (SAN) myocytes isolated from ciHCN4-KO mice at the mean time of death revealed a strong reduction of both the If current (by ∼70%) and of the spontaneous rate (by ∼60%). In agreement with functional results, immunofluorescence and Western blot analysis showed reduced expression of HCN4 protein in SAN tissue and cells. In ciHCN4-KO animals, the residual If was normally sensitive to β-adrenergic receptor (β-AR) modulation, and the permanence of rate response to β-AR stimulation was observed both in vivo and in vitro. Our data show that cardiac HCN4 channels are essential for normal heart impulse generation and conduction in adult mice and support the notion that dysfunctional HCN4 channels can be a direct cause of rhythm disorders. This work contributes to identifying the molecular mechanism responsible for cardiac pacemaking.


The Journal of General Physiology | 2006

Regulation of Gating and Rundown of HCN Hyperpolarization-activated Channels by Exogenous and Endogenous PIP2

Phillip Pian; Annalisa Bucchi; Richard B. Robinson; Steven A. Siegelbaum

The voltage dependence of activation of the HCN hyperpolarization-activated cation channels is shifted in inside-out patches by −40 to −60 mV relative to activation in intact cells, a phenomenon referred to as rundown. Less than 20 mV of this hyperpolarizing shift can be due to the influence of the canonical modulator of HCN channels, cAMP. Here we study the role of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in HCN channel rundown, as hydrolysis of PI(4,5)P2 by lipid phosphatases is thought to underlie rundown of several other channels. We find that bath application of exogenous PI(4,5)P2 reverses the effect of rundown, producing a large depolarizing shift in HCN2 activation. A synthetic short chain analogue of PI(4,5)P2, dioctanoyl phosphatidylinositol 4,5-bisphosphate, shifts the HCN2 activation curve to more positive potentials in a dose-dependent manner. Other dioctanoyl phosphatidylinositides with one or more phosphates on the lipid headgroup also shift activation, although phosphatidylinositol (PI) is ineffective. Several lines of evidence suggest that HCN2 is also regulated by endogenous PI(4,5)P2: (a) blockade of phosphatases slows the hyperpolarizing shift upon patch excision; (b) application of an antibody that binds and depletes membrane PIP2 causes a further hyperpolarizing shift in activation; (c) the shift in activation upon patch excision can be partially reversed by MgATP; and (d) the effect of MgATP is blocked by wortmannin, an inhibitor of PI kinases. Finally, recordings from rabbit sinoatrial cells demonstrate that diC8 PI(4,5)P2 delays the rundown of native HCN currents. Thus, both native and recombinant HCN channels are regulated by PI(4,5)P2.


The Journal of Physiology | 2004

If and sinoatrial node pacemaking

Annalisa Bucchi; Mirko Baruscotti; Dario DiFrancesco

The majority of Na+ channels in the heart are composed of the tetrodotoxin (TTX)‐resistant (KD, 2–6 μm) Nav1.5 isoform; however, recently it has been shown that TTX‐sensitive (KD, 1–10 nm) neuronal Na+ channel isoforms (Nav1.1, Nav1.3 and Nav1.6) are also present and functionally important in the myocytes of the ventricles and the sinoatrial (SA) node. In the present study, in mouse SA node pacemaker cells, we investigated Na+ currents under physiological conditions and the expression of cardiac and neuronal Na+ channel isoforms. We identified two distinct Na+ current components, TTX resistant and TTX sensitive. At 37°C, TTX‐resistant iNa and TTX‐sensitive iNa started to activate at ∼−70 and ∼−60 mV, and peaked at −30 and −10 mV, with a current density of 22 ± 3 and 18 ± 1 pA pF−1, respectively. TTX‐sensitive iNa inactivated at more positive potentials as compared to TTX‐resistant iNa. Using action potential clamp, TTX‐sensitive iNa was observed to activate late during the pacemaker potential. Using immunocytochemistry and confocal microscopy, different distributions of the TTX‐resistant cardiac isoform, Nav1.5, and the TTX‐sensitive neuronal isoform, Nav1.1, were observed: Nav1.5 was absent from the centre of the SA node, but present in the periphery of the SA node, whereas Nav1.1 was present throughout the SA node. Nanomolar concentrations (10 or 100 nm) of TTX, which block TTX‐sensitive iNa, slowed pacemaking in both intact SA node preparations and isolated SA node cells without a significant effect on SA node conduction. In contrast, micromolar concentrations (1–30 μm) of TTX, which block TTX‐resistant iNa as well as TTX‐sensitive iNa, slowed both pacemaking and SA node conduction. It is concluded that two Na+ channel isoforms are important for the functioning of the SA node: neuronal (putative Nav1.1) and cardiac Nav1.5 isoforms are involved in pacemaking, although the cardiac Nav1.5 isoform alone is involved in the propagation of the action potential from the SA node to the surrounding atrial muscle.


Circulation | 2006

Wild-Type and Mutant HCN Channels in a Tandem Biological-Electronic Cardiac Pacemaker

Annalisa Bucchi; Alexei N. Plotnikov; Iryna N. Shlapakova; Peter Danilo; Yelena Kryukova; Jihong Qu; Zhongju Lu; Huilin Liu; Zongming Pan; Irina A. Potapova; Bruce Ken Knight; Steven D. Girouard; Ira S. Cohen; Peter R. Brink; Richard B. Robinson; Michael R. Rosen

Background— Biological pacemakers (BPM) implanted in canine left bundle branch function competitively with electronic pacemakers (EPM). We hypothesized that BPM engineered with the use of mE324A mutant murine HCN2 (mHCN2) genes would improve function over mHCN2 and that BPM/EPM tandems confer advantage over either approach alone. Methods and Results— In cultured neonatal rat myocytes, activation midpoint was −46.9 mV in mE324A versus −66.1 mV in mHCN2 (P<0.05). mE324A manifested a positive shift of voltage dependence of gating kinetics of activation and deactivation compared with mHCN2 (P<0.05) in myocytes as well as Xenopus oocytes. In intact dogs in complete atrioventricular block, saline (control), mHCN2, or mE324A virus was injected into left bundle branch, and EPM were implanted (VVI 45 bpm). Twenty-four–hour ECGs were monitored for 14 days. With EPM discontinued, there was no difference in duration of overdrive suppression among groups. However, basal heart rates in controls were less than those in mHCN2, which did not differ from those in E324A (45 versus 57 versus 53 bpm; P<0.05). When spontaneous rate fell below 45 bpm, EPM intervened at that rate, triggering 83% of beats in control, contrasting (P<0.05) with 26% (mHCN2) and 36% (mE324A). On day 14, epinephrine (1 &mgr;g/kg per minute IV) induced a 50% heart rate increase in all mE324A, one third of mHCN2, and one fifth of control (P<0.05 mE324A versus control or mHCN2). Conclusions— mE324A induces faster, more positive pacemaker current activation than mHCN2 and stable, catecholamine-sensitive rhythms in situ that compete with EPM comparably but more catecholamine responsively than mHCN2. BPM/EPM tandems function reliably, reduce the number of EPM beats, and confer sympathetic responsiveness to the tandem.


The Journal of Physiology | 2006

Properties of ivabradine-induced block of HCN1 and HCN4 pacemaker channels

Annalisa Bucchi; A. Tognati; Raffaella Milanesi; Mirko Baruscotti; Dario DiFrancesco

Ivabradine is a ‘heart rate‐reducing’ agent able to slow heart rate, without complicating side‐effects. Its action results from a selective and specific block of pacemaker f‐channels of the cardiac sinoatrial node (SAN). Investigation has shown that block by ivabradine requires open f‐channels, is use dependent, and is affected by the direction of current flow. The constitutive elements of native pacemaker channels are the hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels, of which four isoforms (HCN1–4) are known; in rabbit SAN tissue HCN4 is expressed strongly, and HCN1 weakly. In this study we have investigated the blocking action of ivabradine on mouse (m) HCN1 and human (h) HCN4 channels heterologously expressed in HEK 293 cells. Ivabradine blocked both channels in a dose‐dependent way with half‐block concentrations of 0.94 μm for mHCN1 and 2.0 μm for hHCN4. Properties of block changed substantially for the two channels. Block of hHCN4 required open channels, was strengthened by depolarization and was relieved by hyperpolarization. Block of mHCN1 did not occur, nor was it relieved, when channels were in the open state during hyperpolarization; block required channels to be either closed, or in a transitional state between open and closed configurations. The dependence of block upon current flow was limited for hHCN4, and not significant for mHCN1 channels. In summary our results indicate that ivabradine is an ‘open‐channel’ blocker of hHCN4, and a ‘closed‐channel’ blocker of mHCN1 channels. The mode of action of ivabradine on the two channels is discussed by implementing a simplified version of a previously developed model of f‐channel kinetics.


Journal of Molecular and Cellular Cardiology | 2010

The cardiac pacemaker current.

Mirko Baruscotti; Andrea Barbuti; Annalisa Bucchi

In mammals cardiac rate is determined by the duration of the diastolic depolarization of sinoatrial node (SAN) cells which is mainly determined by the pacemaker I(f) current. f-channels are encoded by four members of the hyperpolarization-activated cyclic nucleotide-gated gene (HCN1-4) family. HCN4 is the most abundant isoform in the SAN, and its relevance to pacemaking has been further supported by the discovery of four loss-of-function mutations in patients with mild or severe forms of cardiac rate disturbances. Due to its selective contribution to pacemaking, the I(f) current is also the pharmacological target of a selective heart rate-reducing agent (ivabradine) currently used in the clinical practice. Albeit to a minor extent, the I(f) current is also present in other spontaneously active myocytes of the cardiac conduction system (atrioventricular node and Purkinje fibres). In working atrial and ventricular myocytes f-channels are expressed at a very low level and do not play any physiological role; however in certain pathological conditions over-expression of HCN proteins may represent an arrhythmogenic mechanism. In this review some of the most recent findings on f/HCN channels contribution to pacemaking are described.


Nature Communications | 2014

Exercise training reduces resting heart rate via downregulation of the funny channel HCN4

Alicia D'Souza; Annalisa Bucchi; Anne Berit Johnsen; Sunil Logantha; Oliver Monfredi; Joseph Yanni; Sukhpal Prehar; George Hart; Elizabeth J. Cartwright; Ulrik Wisløff; Halina Dobryznski; Dario DiFrancesco; Gwilym M. Morris; Mark R. Boyett

Endurance athletes exhibit sinus bradycardia, that is a slow resting heart rate, associated with a higher incidence of sinus node (pacemaker) disease and electronic pacemaker implantation. Here we show that training-induced bradycardia is not a consequence of changes in the activity of the autonomic nervous system but is caused by intrinsic electrophysiological changes in the sinus node. We demonstrate that training-induced bradycardia persists after blockade of the autonomous nervous system in vivo in mice and in vitro in the denervated sinus node. We also show that a widespread remodelling of pacemaker ion channels, notably a downregulation of HCN4 and the corresponding ionic current, If. Block of If abolishes the difference in heart rate between trained and sedentary animals in vivo and in vitro. We further observe training-induced downregulation of Tbx3 and upregulation of NRSF and miR-1 (transcriptional regulators) that explains the downregulation of HCN4. Our findings provide a molecular explanation for the potentially pathological heart rate adaptation to exercise training.


Journal of Molecular and Cellular Cardiology | 2003

If-dependent modulation of pacemaker rate mediated by cAMP in the presence of ryanodine in rabbit sino-atrial node cells

Annalisa Bucchi; Mirko Baruscotti; Richard B. Robinson; Dario DiFrancesco

I(f) contributes to generation and autonomic control of spontaneous activity of cardiac pacemaker cells through a cAMP-dependent, Ca(2+)-independent mechanism of rate regulation. However, disruption of Ca(2+) release from sarcoplasmic reticulum (SR) by ryanodine (Ry) has been recently shown to slow spontaneous rate and inhibit beta-adrenergic receptor (betaAR)-induced rate acceleration, leading to the suggestion that the target of betaAR modulation of pacemaking is the intracellular Ca(2+)-regulatory process. We have investigated whether the Ry-induced decrease of betaAR rate modulation alternatively involves disruption of the betaAR-adenylate-cyclase-cAMP-I(f) mechanism. Prolonged exposure to Ry (3 microM, >2 min) slowed spontaneous rate of pacemaker cells by 29.8% via a depolarizing shift of take-off potential (TOP) without significantly changing early diastolic depolarization rate. Ry depressed rate acceleration caused by isoproterenol (Iso) (1 microM, 23.6% in control vs. 8.0%), but did not modify that caused by two membrane-permeable cAMP analogs, CPT-cAMP (300 microM, 17.7% vs. 17.3%) and Rp-cAMPs (50 microM, 18.0% vs. 20.6%). Consistent with the rate effect, exposure to Ry decreased the shift induced by Iso, but not that induced by either cAMP analog on the I(f)-activation curve. We conclude that disruption of Ry receptor function and SR Ca(2+) release depresses betaAR-induced modulation of heart rate, but does not impair cAMP-dependent rate acceleration mediated by I(f). However, abolishment of normal Ca(2+) homeostasis may result in the failure of betaAR agonists to sufficiently elevate cAMP near f-channels. The molecular basis for Ca(2+)-dependent interference in beta-adrenergic signaling remains to be determined.


Heart Rhythm | 2008

HCN212-channel biological pacemakers manifesting ventricular tachyarrhythmias are responsive to treatment with If blockade

Alexei N. Plotnikov; Annalisa Bucchi; Iryna N. Shlapakova; Peter Danilo; Peter R. Brink; Richard B. Robinson; Ira S. Cohen; Michael R. Rosen

BACKGROUND A potential concern about biological pacemakers is their possible malfunction, which might create ventricular tachycardias (VTs). OBJECTIVE The purpose of this study was to test our hypothesis that should VTs complicate implantation of HCN-channel-based biological pacemakers, they would be suppressed by inhibitors of the pacemaker current, I(f). METHODS We created a chimeric channel (HCN212) containing the N- and C-termini of mouse HCN2 and the transmembrane region of mouse HCN1 and implanted it in HEK293 cells. Forty-eight hours later, in whole-cell patch clamp recordings, mean steady state block induced by 3 microM ivabradine (IVB) showed HCN1 = HCN212 > HCN2 currents. The HCN212 adenoviral construct was then implanted into the canine left bundle branch in 11 dogs. Complete AV block was created via radiofrequency ablation, and a ventricular demand electronic pacemaker was implanted (VVI 45 bpm). Electrocardiogram, 24-hour Holter monitoring, and pacemaker log record check were performed for 11 days. RESULTS All dogs developed rapid VT (>120 bpm, maximum rate = 285 +/- 37 bpm) at 0.9 +/- 0.3 days after implantation that persisted through 5 +/- 1 days. IVB, 1 mg/kg over 5 minutes, was administered during rapid VT, and three dogs received a second dose 24 hours later. While VT terminated with IBV in all instances within 3.4 +/- 0.6 minutes, no effect of IVB on sinus rate was noted. CONCLUSION We conclude that (1) I(f)-associated tachyarrhythmias-if they occur with HCN-based biological pacemakers-can be controlled with I(f)-inhibiting drugs such as IVB; (2) in vitro, IVB appears to have a greater steady state inhibiting effect on HCN1 and HCN212 isoforms than on HCN4; and (3) VT originating from the HCN212 injection site is suppressed more readily than sinus rhythm. This suggests a selectivity of IVB at the concentration attained for ectopic over HCN4-based pacemaker function. This might confer a therapeutic benefit.

Collaboration


Dive into the Annalisa Bucchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge