Annalisa Cherchi
National Institute of Geophysics and Volcanology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annalisa Cherchi.
Journal of Climate | 2007
Annalisa Cherchi; Silvio Gualdi; Swadhin K. Behera; Jing-Jia Luo; Sébastien Masson; Toshio Yamagata; Antonio Navarra
Abstract The Indian summer monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high-resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations. In this study, the relationships between the ISM and tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean dipole mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SS...
Monthly Weather Review | 2010
Andrea Alessandri; Andrea Borrelli; Simona Masina; Annalisa Cherchi; Silvio Gualdi; Antonio Navarra; Pierluigi Di Pietro; Andrea F. Carril
Abstract The development of the Istituto Nazionale di Geofisica e Vulcanologia (INGV)–Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) Seasonal Prediction System (SPS) is documented. In this SPS the ocean initial-conditions estimation includes a reduced-order optimal interpolation procedure for the assimilation of temperature and salinity profiles at the global scale. Nine-member ensemble forecasts have been produced for the period 1991–2003 for two starting dates per year in order to assess the impact of the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations (i.e., without assimilation of subsurface profiles during ocean initialization), it is shown that the improved ocean initialization increases the skill in the prediction of tropical Pacific sea surface temperatures of the system for boreal winter forecasts. Considering the forecast of the 1997/98 El Nino, the data assimilation in the ocean initial conditions leads to a considerable impro...
Scientific Reports | 2015
Andrea Alessandri; Matteo De Felice; Ning Zeng; Annarita Mariotti; Yutong Pan; Annalisa Cherchi; June-Yi Lee; Bin Wang; Kyung-Ja Ha; Paolo Michele Ruti; Vincenzo Artale
The warm-temperate regions of the globe characterized by dry summers and wet winters (Mediterranean climate; MED) are especially vulnerable to climate change. The potential impact on water resources, ecosystems and human livelihood requires a detailed picture of the future changes in this unique climate zone. Here we apply a probabilistic approach to quantitatively address how and why the geographic distribution of MED will change based on the latest-available climate projections for the 21st century. Our analysis provides, for the first time, a robust assessment of significant northward and eastward future expansions of MED over both the Euro-Mediterranean and western North America. Concurrently, we show a significant 21st century replacement of the equatorward MED margins by the arid climate type. Moreover, future winters will become wetter and summers drier in both the old and newly established MED zones. Should these projections be realized, living conditions in some of the most densely populated regions in the world will be seriously jeopardized.
Journal of Climate | 2014
Annalisa Cherchi; H. Annamalai; Simona Masina; Antonio Navarra
AbstractDry summers over the eastern Mediterranean are characterized by strong descent anchored by long Rossby waves, which are forced by diabatic heating associated with summer monsoon rainfall over South Asia. The large-scale teleconnection between rising and subsiding air masses is referred to as the “monsoon–desert mechanism.” This study evaluates the ability of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) models in representing the physical processes involved in this mechanism.An evaluation of statistics between summer climatologies of monsoon diabatic heating and that of vertical velocity over the eastern Mediterranean suggests a linear relationship. Despite large spatial diversity in monsoon heating, descent over the Mediterranean is coherently located and realistic in intensity. To measure the sensitivity of descent to the diversity in the horizontal and vertical distribution of monsoon heating, a series of linear atmosphere model experiments are performed. It is shown that col...
Monthly Weather Review | 2015
Andrea Alessandri; Andrea Borrelli; Annalisa Cherchi; Stefano Materia; Antonio Navarra; June-Yi Lee; Bin Wang
Ensembles of retrospective 2-monthdynamical forecasts initiated on 1 May are used to predict the onset of the Indian summer monsoon (ISM) for the period 1989‐2005. The subseasonal predictions (SSPs) are based on a coupled general circulation model and recently they have been upgraded by the realistic initialization of the atmospherewithinitial conditions taken fromreanalysis. Twoobjective large-scale methods based on dynamicalcirculation and hydrological indices are applied todetect the ISM onset. The SSPs showsome skill in forecasting earlier-than-normal ISM onsets, while they have difficulty in predicting late onsets. It is shown that significant contribution to the skill in forecasting early ISM onsets comes from the newly developed initialization of the atmosphere from reanalysis. On one hand, atmospheric initialization produces a better representation of the atmospheric mean state in the initial conditions, leading to a systematically improved monsoon onset sequence. On the other hand, the initialization of the atmosphere allows some skill in forecasting the northwardpropagating intraseasonal wind and precipitation anomalies over the tropical Indian Ocean. The northwardpropagating intraseasonal modes trigger themonsoonin some early-onset years. The realistic phase initialization of these modes improves the forecasts of the associated earlier-than-normal monsoon onsets. The prediction of lateonsetsisnotnoticeably improved by the initialization of theatmosphere. Itis suggested thatlateonsetsofthe monsoon are too far away from the start date of the forecasts to conserve enough memory of the intraseasonal oscillation (ISO) anomalies and of the improved representation of the mean state in the initial conditions.
Climate Dynamics | 2016
Satyaban B. Ratna; Annalisa Cherchi; P. V. Joseph; Swadhin K. Behera; B. Abish; Simona Masina
The Indo-Pacific Ocean (i.e. region between 30°E and 150°E) has been experiencing a warming since the 1950s. At the same time, the large-scale summer monsoon rainfall over India and the moisture over the East Africa/Arabian Sea are both decreasing. In this study, we intend to investigate how the decrease of moisture over the East Africa/Arabian Sea is related to the Indo-Pacific Ocean warming and how this could affect the variability of the Indian summer monsoon rainfall. We performed the analysis for the period 1951–2012 based on observed precipitation, sea surface temperature and atmospheric reanalysis products and we verified the robustness of the result by comparing different datasets. The decreasing trend of moisture over the East Africa/Arabian Sea coincides with an increasing trend of moisture over the western Pacific region. This is accompanied by the strengthening (weakening) of the upward motion over the western Pacific (East Africa/Arabian Sea) that, consequently, contributes to modulate the western Pacific-Indian Ocean Walker circulation. At the same time, the low-level westerlies are weakening over the peninsular India, thus contributing to the reduction of moisture transport towards India. Therefore, rainfall has decreased over the Western Ghats and central-east India. Contrary to previous decades, since 2003 moisture over the East Africa/Arabian Sea started to increase and this is accompanied by the strengthening of convection due to increased warming of sea surface temperature over the western Arabian Sea. Despite this moisture increase over the Arabian Sea, we found that moisture transport is still weakening over the Indian landmass in the very recent decade and this has been contributing to the decreased precipitation over the northeast India and southern part of the Western Ghats.
Climate Dynamics | 2014
Annalisa Cherchi; Andrea F. Carril; Claudio G. Menéndez; Laura Zamboni
An ensemble of nine experiments with the same interannually varying sea surface temperature (SST), as boundary forcing, and different initial conditions is used to investigate the role of tropical oceans in modulating precipitation variability in the region of La Plata Basin (LPB). The results from the ensemble are compared with a twentieth-century experiment performed with a coupled ocean-atmosphere model, sharing the same atmospheric component. A rotated empirical orthogonal functions analysis of South America precipitation shows that the dominant mode of variability in spring is realistically captured in both experiments. Its principal component (RPC1) correlated with global SST and atmospheric fields identifies the pattern related to El Niño Southern Oscillation and its large-scale teleconnections. Overall the pattern is well simulated in the tropical southern Pacific Ocean, mainly in the ensemble, but it is absent or too weak in other oceanic areas. The coupled model experiment shows a more realistic correlation in the subtropical South Atlantic where air-sea interactions contribute to the relationship between LPB precipitation and SST. The correspondence between model and data is much improved when the composite analysis of SST and atmospheric fields is done over the ensemble members having an RPC1 in agreement with the observations: the improvement relies on avoiding climate noise by averaging only over members that are statistically similar. Furthermore, the result suggests the presence of a high level of uncertainty due to internal atmospheric variability. The analysis of some individual years selected from the model and data RPC1 comparison reveals interesting differences among rainy springs in LPB. For example, 1982, which corresponds to a strong El Niño year, represents a clean case with a distinct wave train propagating from the central Pacific and merging with another one from the eastern tropical south Indian Ocean. The year 2003 is an example of a rainy spring in LPB not directly driven by remote SST forcing. In this case the internal variability has a dominant role, as the model is not able to reproduce the correct local precipitation pattern.
Journal of Climate | 2011
Marcelo Barreiro; Annalisa Cherchi; Simona Masina
AbstractUsing an atmospheric general circulation model coupled to a slab ocean, the effects of ocean heat transport (OHT) on climate are studied by prescribing OHT from 0 to 2 times the present-day values. In agreement with previous studies, an increase in OHT from zero to present-day conditions warms the climate by decreasing the albedo due to reduced sea ice extent and marine stratus cloud cover and by increasing the greenhouse effect through a moistening of the atmosphere. However, when the OHT is further increased, the solution becomes highly dependent on a positive radiative feedback between tropical low clouds and sea surface temperature. The strength of the low cloud–SST feedback combined with the model design may produce solutions that are globally colder than in the control run, mainly due to an unrealistically strong equatorial cooling. Excluding those cases, results indicate that the climate warms only if the OHT increase does not exceed more than 10% of the present-day value in the case of a s...
Journal of Climate | 2014
Florence Colleoni; Simona Masina; Annalisa Cherchi; Doroteaciro Iovino
AbstractThis work explores the impact of orbital parameters and greenhouse gas concentrations on the climate of marine isotope stage (MIS) 7 glacial inception and compares it to that of MIS 5. The authors use a coupled atmosphere–ocean general circulation model to simulate the mean climate state of six time slices at 115, 122, 125, 229, 236, and 239 kyr, representative of a climate evolution from interglacial to glacial inception conditions. The simulations are designed to separate the effects of orbital parameters from those of greenhouse gas (GHG). Their results show that, in all the time slices considered, MIS 7 boreal lands mean annual climate is colder than the MIS 5 one. This difference is explained at 70% by the impact of the MIS 7 GHG. While the impact of GHG over Northern Hemisphere is homogeneous, the difference in temperature between MIS 7 and MIS 5 due to orbital parameters differs regionally and is linked with the Arctic Oscillation. The perennial snow cover is larger in all the MIS 7 experim...
Climate Dynamics | 2016
Annalisa Cherchi; H. Annamalai; Simona Masina; Antonio Navarra; Andrea Alessandri
The term “monsoon-desert mechanism” indicates the relationship between the diabatic heating associated with the South Asian summer monsoon rainfall and the remote response in the western sub-tropics where long Rossby waves anchor strong descent with high subsidence. In CMIP5 twenty-first century climate scenarios, the precipitation over South Asia is projected to increase. This study investigates how this change could affect the summer climate projections in the Mediterranean region. In a linear framework the monsoon-desert mechanism in the context of climate change would imply that the change in subsidence over the Mediterranean should be strongly linked with the changes in South Asian monsoon precipitation. The steady-state solution from a linear model forced with CMIP5 model projected precipitation change over South Asia shows a broad region of descent in the Mediterranean, while the results from CMIP5 projections differ having increased descent mostly in the western sector but also decreased descent in parts of the eastern sector. Local changes in circulation, particularly the meridional wind, promote cold air advection that anchors the descent but the barotropic Rossby wave nature of the wind anomalies consisting of alternating northerlies/southerlies favors alternating descent/ascent locations. In fact, the local mid-tropospheric meridional wind changes have the strongest correlation with the regions where the difference in subsidence is largest. There decreased rainfall is mostly balanced by changes in moisture, omega and in the horizontal advection of moisture.