Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annalisa Dean is active.

Publication


Featured researches published by Annalisa Dean.


ChemMedChem | 2013

A glutathione derivative with chelating and in vitro neuroprotective activities: synthesis, physicochemical properties, and biological evaluation

Ivana Cacciatore; Catia Cornacchia; Erika Fornasari; Leonardo Baldassarre; Francesco Pinnen; Piera Sozio; Antonio Di Stefano; Lisa Marinelli; Annalisa Dean; Stefania Fulle; Ester Sara Di Filippo; Rita La Rovere; Antonia Patruno; Alessio Ferrone; Valerio Di Marco

Metal‐ion dysregulation and oxidative stress have been linked to the progressive neurological decline associated with neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Herein we report the synthesis and chelating, antioxidant, and in vitro neuroprotective activities of a novel derivative of glutathione, GS(HQ)H, endowed with an 8‐hydroxyquinoline group as a metal‐chelating moiety. In vitro results showed that GS(HQ)H may be stable enough to be absorbed unmodified and arrive intact to the blood–brain barrier, that it may be able to remove CuII and ZnII from the Aβ peptide without causing any copper or zinc depletion in vivo, and that it protects SHSY‐5Y human neuroblastoma cells against H2O2‐ and 6‐OHDA‐induced damage. Together, these findings suggest that GS(HQ)H could be a potential neuroprotective agent for the treatment of neurodegenerative diseases in which a lack of metal homeostasis has been reported as a key factor.


European Journal of Medicinal Chemistry | 2013

Peroxisome proliferator-activated receptor-γ mediates the anti-inflammatory effect of 3-hydroxy-4-pyridinecarboxylic acid derivatives: synthesis and biological evaluation.

Paola Brun; Annalisa Dean; Valerio Di Marco; Pathak Surajit; Ignazio Castagliuolo; Davide Carta; Maria Grazia Ferlin

Seven 3-hydroxy-4-pyridinecarboxylic acid derivatives (HPs), aza-analogues of salicylic acid and structurally close to other potent inflammatory pyridine compounds such as aminopyridinylmethanols and aminopyridinamines, were synthesized, and their anti-inflammatory activity was evaluated. The synthesis was performed by adopting a general procedure involving an intramolecular Diels-Alder cycloaddition of oxazoles with acrylic acid to form various substituted pyridinic acids. The newly synthesized HPs did not exhibit cytotoxic activity on human monocytes-derived macrophages at concentrations up to 10(2) μM. Anti-inflammatory activity of the compounds was screened in vitro by evaluating the capability to inhibit cytokines release from lipopolysaccharide (LPS) stimulated human macrophages. 3-Hydroxy-1-methyl-4-pyridinecarboxylic acid (24) was found to be the most active HP. At 10 μM concentration, HP 24 reduced LPS-induced and nuclear factor-κB activation and cyclooxygenase-2 expression, while increased intracellular reactive oxygen species generation and peroxisome proliferator-activated receptor (PPAR-γ) mRNA transcript level. Indeed, pre-treatment of LPS-exposed human macrophages with PPAR-γ specific antagonist completely prevented HP 24-induced TNF-α and IL8 down regulation, demonstrating that the PPARγ pathway is mandatory for the HP 24 anti-inflammatory effect. Finally, daily treatment with HP 24 ameliorated the outcome of DSS-induced colitis in mice, significantly reducing colonic MPO activity and IL-1β tissue levels.


Dalton Transactions | 2010

Vanadate complexes in serum: a speciation modeling study

Tamás Jakusch; Annalisa Dean; Tamás Oncsik; Attila Bényei; Valerio Di Marco; Tamás Kiss

The speciations of two drug candidate ligands, 2-hydroxypyridine-N-oxide (Hhpno) and 2-mercaptopyridine-N-oxide (Hmpno), with vanadate (V(V)) were determined at 25.0 degrees C and 0.20 mol dm(-3) KCl by pH-metric and (51)V-NMR methods. At pH 7.4, the two predominant compounds with both ligands are the VO(2)L(2) and VO(2)L(OH). NH(4)[VO(2)(hpno)(2)] x 3 H(2)O was prepared in solid form, and its crystal structure was determined by X-ray diffraction. The stabilities of the complexes VO(2)L(2) of five drug candidate ligands were compared at pH 7.4. In view of the stability sequence hpno > maltol approximately hdp (Hhdp: 3-hydroxy-1,2-dimethyl-4-pyridinone) >> mpno > picolinic acid, the first two of these ligands were chosen for equilibrium studies with apotransferrin (apoTf) competition. The V(V)-apoTf stability constants (log K(1) = 6.03 +/- 0.10; log K(2) = 5.46 +/- 0.18) determined by (51)V-NMR spectroscopy were confirmed by ultrafiltration. Both methods proved that there seems to be no hydrogencarbonate-vanadate competition for the apoTf anion-binding positions. The other potential high molecular mass V(V) binder in the serum is human serum albumin (HSA). As no interaction was detected by (51)V-NMR spectroscopy or fluorimetry, the binding properties of HSA were quantified on the basis of literature data. As a final conclusion, speciation modeling calculations suggest that, under serum conditions, apoTf is probably the primary metal ion binder, even in the presence of the most stable V(V) carrier ligands hpno and maltol and HSA plays a negligible role in V(V) binding.


Analytical and Bioanalytical Chemistry | 2013

Different approaches to the study of chelating agents for iron and aluminium overload pathologies

Guido Crisponi; Annalisa Dean; Valerio Di Marco; Joanna Izabela Lachowicz; Valeria Marina Nurchi; Maurizio Remelli; Andrea Tapparo

AbstractOur objective is to illustrate the activity of the groups operating in Italy involved in identification and study of new chelating agents, mainly intended for treatment of human pathology correlated with metal overload. The objective of “chelation therapy” is removal of toxic metal ions from the human body or attenuation of their toxicity by transforming them into less toxic compounds or by dislocating them from the site at which they exert a toxic action. Because most of this research activity is related to chelating agents for iron and aluminium, diseases related to these two metal ions are briefly treated. Iron overload is the most common metal toxicity disease worldwide. The toxicity of aluminium in dialysis patients was a serious problem for haemodialysis units in the seventies and eighties of the last century. In particular, this review focuses on research performed by the group at Cagliari and Ferrara, and by that at Padova. The former is studying, above all, bisphosphonate and kojic acid derivatives, and the latter is investigating 3,4-hydroxypyridinecarboxylic acids with differently substituted pyridinic rings. FigureAim of this paper is to illustrate the research on different classes of ligands, which are intended as possible chelating agents for the treatment of human pathologies correlated to iron and aluminium overload.


Rapid Communications in Mass Spectrometry | 2010

Perturbations produced by electrospray ionization mass spectrometry in the speciation of aluminium(III)/1,6-dimethyl-4-hydroxy-3-pyridinecarboxylate aqueous solutions

Valerio Di Marco; Luca Raveane; Annalisa Dean; Pietro Traldi

Electrospray ionization mass spectrometry (ESI-MS) is very often employed to study metal/ligand equilibria in aqueous solution. However, the ionization process can introduce perturbations which affect the speciation results in an unpredictable way. It is necessary to identify these perturbations in order to correctly interpret the ESI-MS speciation results. Aluminium(III)/1,6-dimethyl-4-hydroxy-3-pyridinecarboxylate (DQ716) aqueous solutions at various pH were analysed by ESI-MS, and speciation results were compared with those obtained by equilibrium techniques. Differences observed were both qualitative and quantitative. The ESI-MS spectral changes due to different settings of the following instrumental parameters were analyzed: the solution flow rate (F(S)), the nebulizer gas flow rate (F(G)), the potential applied at the entrance capillary (E(C)), and the temperature of the drying gas (T(G)). The effects produced by F(S) and E(C) on the spectra strongly suggest the key role of surface activity in determining the relative fraction of the ions reaching the detector. The experimental effects of F(S) and T(G) were interpreted considering the presence of at least two reactions in the gas phase and a dimerization occurring in the droplets. These perturbations cannot be generalized because they appear to be chemical system-related and instrument-dependent. Therefore, the identification of perturbations is a required task for any metal-ligand equilibrium study performed by ESI-MS. Our results indicate that perturbations can be identified by evaluating the effects produced in the spectra by a change of instrumental parameters.


Dalton Transactions | 2009

1,6-Dimethyl-4-hydroxy-3-pyridinecarboxylic acid and 4-hydroxy-2-methyl-3-pyridinecarboxylic acid as new possible chelating agents for iron and aluminium

Annalisa Dean; Maria Grazia Ferlin; Paola Brun; Ignazio Castagliuolo; Robert A. Yokel; Denis Badocco; Paolo Pastore; Alfonso Venzo; G. Giorgio Bombi; Valerio Di Marco

1,6-Dimethyl-4-hydroxy-3-pyridinecarboxylic acid (DQ716) and 4-hydroxy-2-methyl-3-pyridinecarboxylic acid (DQ2) were evaluated for possible application to iron (Fe) and aluminium (Al) chelation therapy. Metal/ligand solution chemistry, electrochemistry, cytotoxicity, octanol/water partitioning (D(o/w)), and chelation efficiency, were studied. The Fe(iii)/DQ716, Fe(iii)/DQ2, Al(iii)/DQ716, and Al(iii)/DQ2 solution chemistry was investigated in aqueous 0.6 mol kg(-1) (Na)Cl at 25 degrees C by means of potentiometric titrations, UV-vis spectrophotometry, and (1)H-NMR spectroscopy. DQ716 exhibited the highest coordination efficiency towards Fe(iii) and Al(iii) among all hydroxypyridinecarboxylic acids examined so far, whereas DQ2 complexes were significantly less stable. These results were confirmed by chelation efficiency measurements performed in an octanol-aqueous solution in the presence of those ligands and metals. Partitioning experiments at pH 7.4 showed both DQ716 and DQ2, and their Fe(iii) and Al(iii) complexes, to be hydrophilic. According to the voltammetric data, the free ligands (DQ716 and DQ2) and their metal complexes are not predicted to undergo redox cycling at in vivo conditions. The standard reduction potentials of these complexes, and the kinetics of their formation and dissociation, were obtained. The toxicity of DQ716 and of DQ2 was investigated with human cancer cell lines and normal human fibroblasts. Cytotoxic effects were observed only for DQ2 at 0.1 mM, following 3 d exposure. According to our results, DQ716 has the required favourable properties to be a chelating agent for Fe and Al.


Dalton Transactions | 2009

Use of electrochemical transient techniques to obtain thermodynamic and kinetic data on aqueous Fe(III)–1,6-dimethyl-4-hydroxy-3-pyridinecarboxylate and Fe(III)–4-hydroxy-2-methyl-3-pyridinecarboxylate complexes

Denis Badocco; Moreno Marcon; Andrea Mondin; Annalisa Dean; Valerio Di Marco; Paolo Pastore

Voltammetric experiments were used to demonstrate the possibility to rapidly obtain stability constants, E degrees values and kinetic parameters of Fe(III) complexes with 1,6-dimethyl-4-hydroxy-3-pyridinecarboxylic acid (DQ716) at pH 2.3 and 4-hydroxy-2-methyl-3-pyridinecarboxylic acid (DQ2) at pH 3. Fe(III) diffusion coefficient (D(Fe)= 5.5.10(-6) cm(2)/s), heterogeneous electron transfer kinetic constant (k degrees = 2.7.10(-4)cm/s), symmetry coefficient (alpha= 0.57) and Fe(III)/Fe(II) standard reduction potential (E degrees = 0.53 V vs. SCE) were determined beforehand and used to obtain all the other results. Digital simulation together with potentiometric data were used to define the whole reaction system in terms of thermodynamic and kinetic parameters. In particular, E degrees and the dissociation kinetic constant, k(b), of the 1:1 (E degrees = 0.22 V vs. SCE, k(b)= 0.032 s(-1)), 1:2 (E degrees = 0.098 V vs. SCE; k(b)= 0.22 s(-1)) and 1:3 (E degrees < or =-0.29 V vs. SCE, k(b)= 157.9 s(-1)) Fe(III)/DQ716 complexes, were estimated. Stability constants of the Fe(II) complexes were computed from these values. The voltammetric data were also interpreted with two independent formalisms: (1) solution of an equation system and (2) a curve fitting method based on the Koutecky-Levich equation. Both approaches allowed us to obtain the speciation of a Fe(III)/DQ716 solution at pH 2.3. Moreover, the second approach allowed the evaluation of the kinetic contributions, the stepwise stability constant of Fe(III)L(2) (7.65 +/- 0.07), and to define the mathematical formalization of the experimental result which link some key-points of the voltammetric curve (inflection points and plateaux) to D(Fe), k degrees , alpha(j) and E degrees . This approach was also successfully applied to obtain the speciation of a Fe(III)/DQ2 solution at pH 3.


European Journal of Inorganic Chemistry | 2006

Methyl-Hydroxypyridinecarboxylic Acids as Possible Bidentate Chelating Agents for Aluminium(III): Synthesis and Metal–Ligand Solution Chemistry

Valerio Di Marco; Annalisa Dean; Maria Grazia Ferlin; Robert A. Yokel; Haitao Li; Alfonso Venzo; G. Giorgio Bombi


Polyhedron | 2009

Complexation of 2,6-pyridinedicarboxylic and 2,6-pyridinediacetic acids towards aluminium(III) and iron(III)

G. Giorgio Bombi; Reheman Aikebaier; Annalisa Dean; Valerio Di Marco; Daniele Marton; Andrea Tapparo


Polyhedron | 2007

Evaluation of 1-methyl-3,4-hydroxypyridinecarboxylic acids as possible bidentate chelating agents for iron(III): Metal-ligand solution chemistry

Valerio Di Marco; Annalisa Dean; Robert A. Yokel; Haitao Li; G. Giorgio Bombi

Collaboration


Dive into the Annalisa Dean's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge