Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annalisa Fico is active.

Publication


Featured researches published by Annalisa Fico.


Biochemical Journal | 2003

Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene- deleted mouse embryonic stem cells subjected to oxidative stress

Stefania Filosa; Annalisa Fico; Francesca Paglialunga; Marco Balestrieri; Almudena Crooke; Pasquale Verde; Paolo Abrescia; José M. Bautista; Giuseppe Martini

Mouse embryonic stem (ES) glucose-6-phosphate (G6P) dehydrogenase-deleted cells ( G6pd delta), obtained by transient Cre recombinase expression in a G6pd -loxed cell line, are unable to produce G6P dehydrogenase (G6PD) protein (EC 1.1.1.42). These G6pd delta cells proliferate in vitro without special requirements but are extremely sensitive to oxidative stress. Under normal growth conditions, ES G6pd delta cells show a high ratio of NADPH to NADP(+) and a normal intracellular level of GSH. In the presence of the thiol scavenger oxidant, azodicarboxylic acid bis[dimethylamide], at concentrations lethal for G6pd delta but not for wild-type ES cells, NADPH and GSH in G6pd delta cells dramatically shift to their oxidized forms. In contrast, wild-type ES cells are able to increase rapidly and intensely the activity of the pentose-phosphate pathway in response to the oxidant. This process, mediated by the [NADPH]/[NADP(+)] ratio, does not occur in G6pd delta cells. G6PD has been generally considered essential for providing NADPH-reducing power. We now find that other reactions provide the cell with a large fraction of NADPH under non-stress conditions, whereas G6PD is the only NADPH-producing enzyme activated in response to oxidative stress, which can act as a guardian of the cell redox potential. Moreover, bacterial G6PD can substitute for the human enzyme, strongly suggesting that a relatively simple mechanism of enzyme kinetics underlies this phenomenon.


Stem Cells and Development | 2008

High-throughput screening-compatible single-step protocol to differentiate embryonic stem cells in neurons.

Annalisa Fico; Genesia Manganelli; Marino Simeone; Stefano Guido; Gabriella Minchiotti; Stefania Filosa

Biotechnologies such as high-throughput screening (HTS) enable evaluation of large compound libraries for their biological activity and toxic properties. In the field of drug development, embryonic stem (ES) cells have been instrumental in HTS for testing the effect of new compounds. We report an innovative method in one step to differentiate ES cells in neurons and glial cells. The four different neuronal subtypes, gamma-aminobutyric acid (GABA)-ergic, dopaminergic, serotonergic, and motor neurons, are formed in culture. This protocol is adaptable to small wells and is highly reproducible, as indicated by the Z-factor value. Moreover, by using either leukemia inhibitory factor (LIF) or recombinant Cripto protein in our culture conditions, we provide evidence that this protocol is suitable for testing the effect of different molecules on neuronal differentiation of ES cells. Finally, thanks to the simplicity in carrying out the experiment, this method provides the possibility of following the morphological evolution of the in vitro differentiating neuronal cells by timelapse videomicroscopy. Our experimental system provides a powerful tool for testing the effect of different substances on survival and/or differentiation of neuronal and glial cells in an HTS-based approach. Furthermore, using genetically modified ES cells, it would be possible to screen for drugs that have a therapeutic effect on specific neuronal pathologies or to follow, by time-lapse videomicroscopy, their ability to in vitro differentiate.


Stem cell reports | 2013

L-Proline Induces a Mesenchymal-like Invasive Program in Embryonic Stem Cells by Remodeling H3K9 and H3K36 Methylation

Stefania Comes; Miriam Gagliardi; Nicola Laprano; Annalisa Fico; Amelia Cimmino; Andrea Palamidessi; Dario De Cesare; Sandro De Falco; Claudia Angelini; Giorgio Scita; Eduardo J. Patriarca; Maria Rosaria Matarazzo; Gabriella Minchiotti

Summary Metabolites are emerging as key mediators of crosstalk between metabolic flux, cellular signaling, and epigenetic regulation of cell fate. We found that the nonessential amino acid L-proline (L-Pro) acts as a signaling molecule that promotes the conversion of embryonic stem cells into mesenchymal-like, spindle-shaped, highly motile, invasive pluripotent stem cells. This embryonic-stem-cell-to-mesenchymal-like transition (esMT) is accompanied by a genome-wide remodeling of the H3K9 and H3K36 methylation status. Consistently, L-Pro-induced esMT is fully reversible either after L-Pro withdrawal or by addition of ascorbic acid (vitamin C), which in turn reduces H3K9 and H3K36 methylation, promoting a mesenchymal-like-to-embryonic-stem-cell transition (MesT). These findings suggest that L-Pro, which is produced by proteolytic remodeling of the extracellular matrix, may act as a microenvironmental cue to control stem cell behavior.


PLOS ONE | 2012

Modulation of the Pentose Phosphate Pathway Induces Endodermal Differentiation in Embryonic Stem Cells

Genesia Manganelli; Annalisa Fico; Ugo Masullo; Fabiana Pizzolongo; Amelia Cimmino; Stefania Filosa

Embryonic stem (ES) cells can differentiate in vitro into a variety of cell types. Efforts to produce endodermal cell derivatives, including lung, liver and pancreas, have been met with modest success. Understanding how the endoderm originates from ES cells is the first step to generate specific cell types for therapeutic purposes. Recently, it has been demonstrated that inhibition of Myc or mTOR induces endodermal differentiation. Both Myc and mTOR are known to be activators of the Pentose Phosphate Pathway (PPP). We found that, differentely from wild type (wt), ES cells unable to produce pentose sugars through PPP differentiate into endodermal precursors in cell culture conditions generally non-permissive to generate them. The same effect was observed when wt ES cells were differentiated in presence of chemical inhibitors of the PPP. These data highlight a new role for metabolism. Indeed, to our knowledge, it is the first time that modulation of a metabolic pathway is described to be crucial in determining ES cell fate.


Free Radical Biology and Medicine | 2008

2-deoxy-d-ribose induces apoptosis by inhibiting the synthesis and increasing the efflux of glutathione.

Annalisa Fico; Genesia Manganelli; Luisa Cigliano; Paolo Bergamo; Paolo Abrescia; Claudio Franceschi; Giuseppe Martini; Stefania Filosa

Oxidative stress is caused by imbalance between the production of reactive oxygen species (ROS) and biological system ability to readily detoxify the reactive intermediates or repair the resulting damage. 2-deoxy-D-ribose (dRib) is known to induce apoptosis by provoking an oxidative stress by depleting glutathione (GSH). In this paper, we elucidate the mechanisms underlying GSH depletion in response to dRib treatment. We demonstrated that the observed GSH depletion is not only due to inhibition of synthesis, by inhibiting gamma-glutamyl-cysteine synthetase, but also due to its increased efflux, by the activity of multidrug resistance associated proteins transporters. We conclude that dRib interferes with GSH homeostasis and that likely cellular oxidative stress is a consequence of GSH depletion. Various GSH fates, such as direct oxidation, lack of synthesis or of storage, characterize different kinds of oxidative stress. In the light of our observations we conclude that dRib does not induce GSH oxidation but interferes with GSH synthesis and storage. Lack of GSH allows accumulation of ROS and cells, disarmed against oxidative insults, undergo apoptosis.


Stem Cells | 2012

Modulating Glypican4 Suppresses Tumorigenicity of Embryonic Stem Cells While Preserving Self-Renewal and Pluripotency

Annalisa Fico; Antoine de Chevigny; Joaquim Egea; Michael R. Bösl; Harold Cremer; Flavio Maina; Rosanna Dono

Self‐renewal and differentiation of stem cell depend on a dynamic interplay of cell‐extrinsic and ‐intrinsic regulators. However, how stem cells perceive the right amount of signal and at the right time to undergo a precise developmental program remains poorly understood. The cell surface proteins Glypicans act as gatekeepers of environmental signals to modulate their perception by target cells. Here, we show that one of these, Glypican4 (Gpc4), is specifically required to maintain the self‐renewal potential of mouse embryonic stem cells (ESCs) and to fine tune cell lineage commitment. Notably, Gpc4‐mutant ESCs contribute to all embryonic cell lineages when injected in blastocyts but lose their intrinsic tumorigenic properties after implantation into nude mice. Therefore, our molecular and functional studies reveal that Gpc4 maintains distinct stemness features. Moreover, we provide evidence that self‐renewal and lineage commitment of different stem cell types is fine tuned by Gpc4 activity by showing that Gpc4 is required for the maintenance of adult neural stem cell fate in vivo. Mechanistically, Gpc4 regulates self‐renewal of ESCs by modulating Wnt/β‐catenin signaling activities. Thus, our findings establish that Gpc4 acts at the interface of extrinsic and intrinsic signal regulation to fine tune stem cell fate. Moreover, the ability to uncouple pluripotent stem cell differentiation from tumorigenic potential makes Gpc4 as a promising target for cell‐based regenerative therapies. Stem Cells2012;30:1863–1874


Nature Communications | 2016

Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency.

Alessandro Fiorenzano; Emilia Pascale; Cristina D'Aniello; Dario Acampora; Cecilia Bassalert; Francesco Russo; Gennaro Andolfi; Mauro Biffoni; Federica Francescangeli; Ann Zeuner; Claudia Angelini; Claire Chazaud; Eduardo J. Patriarca; Annalisa Fico; Gabriella Minchiotti

Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo.


Cardiovascular and Hematological Disorders - Drug Targets | 2010

Discussion on Pharmacogenetic Interaction in G6PD Deficiency and Methods to Identify Potential Hemolytic Drugs

Genesia Manganelli; Annalisa Fico; Giuseppe Martini; Stefania Filosa

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common form of red blood cell enzymopathy. The disorder has reached polymorphic frequencies in different parts of the world due to the relative protection conferred against malaria. G6PD is a housekeeping X-linked gene encoding the first enzyme of the pentose phosphate pathway, an NADPH-producing dehydrogenase. Because erythrocytes do not generate NADPH in any other way than pentose phosphate pathway, they are more susceptible than any other cells to oxidative damages. G6PD deficiency is a prime example of a hemolytic anemia due to an interaction between an intracorpuscular cause and an extracorpuscular cause, because in the majority of cases an exogenous agent triggers hemolysis. Hemolysis, in fact, can be caused by exposure to oxidant agents. Although studies performed on epidemiology, genetics and molecular biology have broaden the information on G6pd deficiency, there are still no reliable and validated methods to test drug hemolytic potential in G6PD deficient patients. The review gives an overview of current knowledge on G6pd deficiency and on the methods that have been developed so far in order to identify drugs causing acute hemolytic anemia in G6pd deficiency. Moreover, we discuss the new potential preclinical strategies to assess, in vitro and in vivo, drug hemolytic risks.


The Journal of Neuroscience | 2014

Reducing Glypican-4 in ES Cells Improves Recovery in a Rat Model of Parkinson's Disease by Increasing the Production of Dopaminergic Neurons and Decreasing Teratoma Formation

Annalisa Fico; Antoine de Chevigny; Christophe Melon; Manon Bohic; Lydia Kerkerian-Le Goff; Flavio Maina; Rosanna Dono; Harold Cremer

The heparan sulfate proteoglycan Glypican 4 (Gpc4) is strongly expressed in mouse embryonic stem (ES) cells where it controls the maintenance of self-renewal by modulating Wnt/β-catenin signaling activities. Here we show that mouse ES cells carrying a hypomorphic Gpc4 allele, in a single-step neuronal differentiation protocol, show increased differentiation into dopaminergic neurons expressing tyrosine hydroxylase (TH) and nuclear receptor related-1 protein (Nurr1) 1. In contrast to wild-type cells, these differentiating Gpc4-mutant cells expressed high levels of DOPA decarboxylase and the dopamine transporter, two markers expressed by fully mature dopaminergic neurons. Intrastriatal transplantation of Gpc4 hypomorphic cells into a 6-OHDA rat model for Parkinsons disease improved motor behavior in the cylinder test and amphetamine-induced rotations at a higher level than transplanted wild-type cells. Importantly, Gpc4 hypomorphic cell grafts, in contrast to wild-type cells, did not generate teratomas in the host brains, leading to strongly enhanced animal survival. Therefore, control of Gpc4 activity level represents a new potential strategy to reduce ES cell tumorigenic features while at the same time increasing neuronal differentiation and integration.


Cardiovascular Research | 2013

The G-protein-coupled receptor APJ is expressed in the second heart field and regulates Cerberus–Baf60c axis in embryonic stem cell cardiomyogenesis

Cristina D'Aniello; Alessandro Fiorenzano; Salvatore Iaconis; Giovanna L. Liguori; Gennaro Andolfi; Gilda Cobellis; Annalisa Fico; Gabriella Minchiotti

AIMS Mammalian cardiomyogenesis occurs through a multistep process that requires a complex network of tightly regulated extracellular signals, which integrate with the genetic and epigenetic machinery to maintain, expand, and regulate the differentiation of cardiac progenitor cells. Pluripotent embryonic stem cells (ESCs) recapitulate many aspects of development, and have provided an excellent opportunity to dissect the molecular mechanisms underlying cardiomyogenesis, which is still incompletely defined. METHODS AND RESULTS We provide new in vivo evidence that the G-protein-coupled receptor angiotensin receptor-like 1 (Apj) is expressed in the mesodermal cells of the second heart field, a population of cardiac progenitors that give rise to a major part of the definitive heart. By combining loss-and-gain of function studies in mouse ESCs, we show that Apj (i) controls the balance between proliferation and cardiovascular differentiation, (ii) regulates the Nodal/Bone Morphogenetic Protein antagonist Cerberus and the Baf60c/Smarcd3 subunit of the Brg1/Brm-associated factors (BAF) chromatin-remodelling complex. CONCLUSION We propose a model in which Apj controls a regulatory Cerberus-Baf60c pathway in pluripotent stem cell cardiomyogenesis, and speculate that this regulatory circuit may regulate cardiac progenitor cell behaviour.

Collaboration


Dive into the Annalisa Fico's collaboration.

Top Co-Authors

Avatar

Flavio Maina

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amelia Cimmino

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gennaro Andolfi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Harold Cremer

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Abrescia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antoine de Chevigny

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge