Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annalisa Grimaldi is active.

Publication


Featured researches published by Annalisa Grimaldi.


Cell and Tissue Research | 2007

Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar

Gianluca Tettamanti; Annalisa Grimaldi; Morena Casartelli; Elena Ambrosetti; Benedetta Ponti; Terenzio Congiu; Roberto Ferrarese; Maria Luisa Rivas-Pena; Francesco Pennacchio; Magda de Eguileor

We have analyzed midgut development during the fifth larval instar in the tobacco budworm Heliothis virescens. In prepupae, the midgut formed during larval instars undergoes a complete renewal process. This drastic remodeling of the alimentary canal involves the destruction of the old cells by programmed cell-death mechanisms (autophagy and apoptosis). Massive proliferation and differentiation of regenerative stem cells take place at the end of the fifth instar and give rise to a new fully functioning epithelium that is capable of digesting and absorbing nutrients and that is maintained throughout the subsequent pupal stage. Midgut replacement in H. virescens is achieved by a balance between this active proliferation process and cell-death mechanisms and is different from similar processes characterized in other insects.


Biology of the Cell | 2004

The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea)

Gianluca Tettamanti; Annalisa Grimaldi; Liliana Rinaldi; Francesca Arnaboldi; Terenzio Congiu; Roberto Valvassori; Magda de Eguileor

Summry— Extracellular matrix components play a key role during the angiogenic process for a correct development of blood vessels: fibroblasts are the main cell type involved in the regulation of ECM protein production. In this study we characterize H. medicinalis fibroblasts and demonstrate that they take part to the regulation of angiogenesis that occurs during wound healing process. Massive proliferation and phenotypic modification are two distinctive markers of fibroblast activation. These cells, that are usually responsible for collagen production and function as an energy reservoir, are recruited during wound healing to form a collagen scaffold through a direct mechanic action and through secretion of specific proteoglycans. In addition we show that the activity of fibroblasts is modulated by EGF, a growth factor involved in wound healing in vertebrates. The formation of bundles of collagen fibrils by fibroblasts is fundamental for the development and migration of new blood vessels in lesioned areas during wound repair: administration of lovastatin in explanted leeches affects fibroblasts, damages collagen “scaffold” and indirectly causes the reduction of neo‐capillary formation.


Insect Biochemistry and Molecular Biology | 2009

Aphidius ervi teratocytes release an extracellular enolase

Patrizia Falabella; Lea Riviello; Maria Luisa De Stradis; Carmela Stigliano; Paola Varricchio; Annalisa Grimaldi; Magda de Eguileor; Franco Graziani; Silvia Gigliotti; Francesco Pennacchio

We report the cloning of a gene and the characterization of the encoded protein, which is released by the teratocytes of the parasitoid Aphidius ervi in the haemocoel of the host aphid Acyrthosiphon pisum. The studied protein was identified by LC-MS/MS, and the gathered information used for isolating the full length cDNA. The corresponding gene was made of 3 exons and 2 introns, and was highly expressed in the adult wasps and in parasitized hosts. The translation product, which was named Ae-ENO, showed a very high level of sequence identity with insect enolases. In vivo immunodetection experiments evidenced Ae-ENO localization in round spots, present in the teratocytes and released in the host haemocoel. Moreover, strong immunoreactivity was detected on the surface of A. ervi larvae and of host embryos. Ae-ENO expressed in insect cells was not secreted in the medium, indicating the occurrence in the teratocytes of an unknown pathway for Ae-ENO release. The recombinant protein produced in bacteria under native conditions was a dimer, with evident enolase activity (K(m) = 0.086 +/- 0.017 mM). Enolase is a well known enzyme in cell metabolism, which, however, is associated with a multifunctional role in disease, when present in the extracellular environment, on the surface of prokaryotic and eukaryotic cells. In these cases, the enolase mediates the activation of enzymes involved in the invasion of tissues by pathogens and tumour cells, and in the evasion of host immune response. The possible role played by Ae-ENO in the host regulation process is discussed in the light of this information.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Microenvironmental control of malignancy exerted by RNASET2, a widely conserved extracellular RNase

Francesco Acquati; Sabrina Bertilaccio; Annalisa Grimaldi; Laura Monti; Raffaella Cinquetti; Paolo Bonetti; Marta Lualdi; Laura Vidalino; Marco Fabbri; Maria Grazia Sacco; Nico van Rooijen; Paola Campomenosi; Davide Vigetti; Alberto Passi; Cristina Riva; Carlo Capella; Francesca Sanvito; Claudio Doglioni; Laura Gribaldo; Paolo Macchi; Antonio Sica; Douglas M. Noonan; Paolo Ghia; Roberto Taramelli

A recent body of evidence indicates an active role for stromal (mis)-regulation in the progression of neoplasias. Within this conceptual framework, genes belonging to the growing but still poorly characterized class of tumor antagonizing/malignancy suppressor genes (TAG/MSG) seem to play a crucial role in the regulation of the cross-talk between stromal and epithelial cells by controlling malignant growth in vivo without affecting any cancer-related phenotype in vitro. Here, we have functionally characterized the human RNASET2 gene, which encodes the first human member of the widespread Rh/T2/S family of extracellular RNases and was recently found to be down-regulated at the transcript level in several primary ovarian tumors or cell lines and in melanoma cell lines. Although we could not detect any activity for RNASET2 in several functional in vitro assays, a remarkable control of ovarian tumorigenesis could be detected in vivo. Moreover, the control of ovarian tumorigenesis mediated by this unique tumor suppressor gene occurs through modification of the cellular microenvironment and the induction of immunocompetent cells of the monocyte/macrophage lineage. Taken together, the data presented in this work strongly indicate RNASET2 as a previously unexplored member of the growing family of tumor-antagonizing genes.


Current Pharmaceutical Design | 2008

Autophagy in invertebrates: insights into development, regeneration and body remodeling.

Gianluca Tettamanti; Emili Saló; Cristina González-Estévez; Daniel A. Felix; Annalisa Grimaldi; Magda de Eguileor

Autophagy is a process in which eukaryotic cells sequester and degrade cytoplasm and organelles via the lysosomal pathway. This process allows turnover of intracellular organelles, participates in the maintenance of cellular homeostasis and prevents accumulation of defective cellular structures. Increased autophagy is normally induced by environmental cues such as starvation and hormones, while excessive levels of autophagy can lead to autophagic programmed cell death (PCD), with features that differ from those of the apoptotic PCD process. Since autophagic PCD plays a key role in development, morphogenesis and regeneration in several animal taxa, identification of evolutionarily conserved components of the autophagic machinery is a basic starting point in order to unravel the role of autophagy under both physiological and pathological conditions. Here we summarize recent findings on the role of autophagy in two different invertebrate taxa, Platyhelminthes and Insects, focusing attention on two complex events occurring in those systems, namely planarian regeneration and insect metamorphosis. Both represent good models in which to investigate the process of autophagy and its relationship with other PCD mechanisms.


Angiogenesis | 2001

Hirudo medicinalis: A new model for testing activators and inhibitors of angiogenesis

M. de Eguileor; Annalisa Grimaldi; Gianluca Tettamanti; Roberto Ferrarese; Terenzio Congiu; M. Protasoni; Gianpaolo Perletti; Roberto Valvassori; Giulio Lanzavecchia

An increasing body of evidence indicates that in the leech Hirudo medicinalis the angiogenic process is finely regulated and coordinated by the botryoidal tissue. In this paper we provide evidence on the involvement of botryoidal tissue cells in angiogenesis induced in H. medicinalis by a variety of stimuli including surgical wounds or the administration of modulators of neovascularization. Interestingly, we show that either human activators of vascular cell growth, or anti-angiogenic peptides like angiostatin and endostatin, or the drug mitomycin, can induce a prompt biological response in H. medicinalis. We show as well that angiogenesis in this invertebrate shares a surprising degree of similarity with neovascularization in vertebrates, both at the biochemical and cellular levels, because it involves similar growth factors/growth factor receptors, and relies on analogous cell–cell or cell–matrix interactions. For these reasons we suggest that H. medicinalis can be used as a reproducible model for testing activators or inhibitors of angiogenesis, and for investigating the biochemical, ultrastructural and cellular processes involved in new vessel formation.


Current Medicinal Chemistry | 2006

Growth factors and chemokines: A comparative functional approach between invertebrates and vertebrates

Gianluca Tettamanti; Davide Malagoli; Roberto Benelli; A. Albini; Annalisa Grimaldi; Gianpaolo Perletti; Douglas M. Noonan; M. de Eguileor; Enzo Ottaviani

Growth factors and cytokines control and coordinate a broad spectrum of fundamental cellular functions, and are evolutionarily conserved both in vertebrates and invertebrates. In this review, we focus our attention on the functional phylogenetic aspects of growth factors/cytokines like the Transforming Growth Factor-beta (TGF-beta), the Connective Tissue Growth Factor (CTGF), and the Vascular Endothelial Growth Factor (VEGF). We will also delve into the activites of two chemokine families, interleukin (IL)-8 (or CXCL8) and CC chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2). These molecules have been selected for their involvement in immune responses and wound healing processes, where they mediate and finely regulate various regeneration processes like angiogenesis or fibroplasia, not only in vertebrates, but also in invertebrates.


Insect Biochemistry and Molecular Biology | 2012

Functional amyloids in insect immune response.

Patrizia Falabella; Lea Riviello; Mariarosa Pascale; Ilaria Di Lelio; Gianluca Tettamanti; Annalisa Grimaldi; Carla Iannone; Maria Chiara Monti; Piero Pucci; Antonio Mario Tamburro; Magda deEguileor; Silvia Gigliotti; Francesco Pennacchio

The innate immune system of insects consists of humoural and cellular responses that provide protection against invading pathogens and parasites. Defence reactions against these latter include encapsulation by immune cells and targeted melanin deposition, which is usually restricted to the surface of the foreign invader, to prevent systemic damage. Here we show that a protein produced by haemocytes of Heliothis virescens (Lepidoptera, Noctuidae) larvae, belonging to XendoU family, generates amyloid fibrils, which accumulate in large cisternae of the rough endoplasmic reticulum and are released upon immune challenge, to form a layer coating non-self objects entering the haemocoel. This amyloid layer acts as a molecular scaffold that promotes localised melanin synthesis and the adhesion of immune cells around the non-self intruder during encapsulation response. Our results demonstrate a new functional role for these protein aggregates that are commonly associated with severe human diseases. We predict that insects will offer new powerful experimental systems for studying inducible amyloidogenesis, which will likely provide fresh perspectives for its prevention.


Autophagy | 2007

Lepidopteran Larval Midgut During Prepupal Instar: Digestion or Self-Digestion?

Gianluca Tettamanti; Annalisa Grimaldi; Francesco Pennacchio; Magda de Eguileor

Programmed cell death (PCD) is crucial in body restructuring during metamorphosis of holometabolous insects (those that have a pupal stage between the final larval and adult stages). Besides apoptosis, an increasing body of evidence indicates that in several insect species programmed autophagy also plays a key role in these developmental processes. We have recently characterized the midgut replacement process in Heliothis virescens larva, during the prepupal phase, responsible for the formation of a new pupal midgut. We found that the elimination of the old larval midgut epithelium is obtained by a combination of apoptotic and autophagic events. In particular, autophagic PCD completely digests decaying tissues, and provides nutrients that are rapidly absorbed by the newly formed epithelium, which is apparently functional at this early stage. The presence of both apoptosis and autophagy in the replacement of midgut cells in Lepidoptera offers the opportunity to investigate the functional peculiarities of these PCD modalities and if they share any molecular mechanism, which may account for possible cross-talk between them. Addendum to: Programmed Cell Death and Stem Cell Differentiation are Responsible for Midgut Replacement in Heliothis virescens During Prepupal Instar G. Tettamanti, A. Grimaldi, M. Casartelli, E. Ambrosetti, B. Ponti, T. Congiu, R. Ferrarese, M.L. Rivas-Pena, F. Pennacchio and M.D. Eguileor Cell Tissue Res 2007; In press


Arthropod Structure & Development | 2001

Larval anatomy and structure of absorbing epithelia in the aphid parasitoid Aphidius ervi Haliday (Hymenoptera, Braconidae)

Magda de Eguileor; Annalisa Grimaldi; Gianluca Tettamanti; Roberto Valvassori; Maria Giovanna Leonardi; Barbara Giordana; Ermenegildo Tremblay; Maria Cristina Digilio; Francesco Pennacchio

The present work describes Aphidius ervi Haliday (Hymenoptera, Braconidae) larval anatomy and development, focusing on time-related changes of body structure and cell ultrastructure, especially of the epithelial layers involved in nutrient absorption. Newly hatched 1st instar larvae of A. ervi are characterised by gut absence and a compact cluster of cells makes up their body. As the parasitoid larva develops, the central undifferentiated cell mass becomes hollowed out, leading to the formation of gut anlage. This suggests that absorption of nutrients at that stage may take place through the body surface, as more directly demonstrated by the occurrence on the epidermis of proteins associated with transepithelial transport, such as Na(+)/K(+)-ATPase and alkaline phosphatase (ALP). Second instar larvae show the presence of the gut with a well-differentiated brush border and a peritrophic membrane. Gut cells are filled by masses of glycogen granules and lipid droplets. The tracheal system starts to be visible. The haemocoel becomes evident in late 2nd instar, and contains large silk glands. Mature 3rd instar larvae are typically hymenopteriform. The midgut accounts for most of the body volume and is actively involved in nutrient absorption, as indicated by the well developed brush border and by the presence of Na(+)/K(+)-ATPase and ALP on the basolateral and luminal membrane respectively. At this stage, large lipid droplets have gradually replaced the cellular glycogen stores in the midgut cells. The tracheae are completely differentiated, but their internal lumen still contains fibrillar material, suggesting that they are not functional as long as host fluids bath the parasitoid larva. In late 3rd instar larvae, silk glands, structurally similar to Malpighian tubules, show a very intense vesicular traffic toward the internal lumen, which, eventually, results in being filled by secretion products, suggesting the possible recycling of metabolic waste products during mummy formation.

Collaboration


Dive into the Annalisa Grimaldi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Pennacchio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge