Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annalisa Scimemi is active.

Publication


Featured researches published by Annalisa Scimemi.


The Journal of Neuroscience | 2005

Multiple and Plastic Receptors Mediate Tonic GABAA Receptor Currents in the Hippocampus

Annalisa Scimemi; Alexey Semyanov; Günther Sperk; Dimitri M. Kullmann; Matthew C. Walker

Persistent activation of GABAA receptors by extracellular GABA (tonic inhibition) plays a critical role in signal processing and network excitability in the brain. In hippocampal principal cells, tonic inhibition has been reported to be mediated by α5-subunit-containing GABAA receptors (α5GABAARs). Pharmacological or genetic disruption of these receptors improves cognitive performance, suggesting that tonic inhibition has an adverse effect on information processing. Here, we show that α5GABAARs contribute to tonic currents in pyramidal cells only when ambient GABA concentrations increase (as may occur during increased brain activity). At low ambient GABA concentrations, activation of δ-subunit-containing GABAA receptors predominates. In epileptic tissue, α5GABAARs are downregulated and no longer contribute to tonic currents under conditions of raised extracellular GABA concentrations. Under these conditions, however, the tonic current is greater in pyramidal cells from epileptic tissue than in pyramidal cells from nonepileptic tissue, implying substitution of α5GABAARs by other GABAA receptor subtypes. These results reveal multiple components of tonic GABAA receptor-mediated conductance that are activated by low GABA concentrations. The relative contribution of these components changes after the induction of epilepsy, implying an adaptive plasticity of the tonic current in the presence of spontaneous seizures.


The Journal of Neuroscience | 2004

NR2B-Containing Receptors Mediate Cross Talk among Hippocampal Synapses

Annalisa Scimemi; Alan Fine; Dimitri M. Kullmann; Dmitri A. Rusakov

Under some conditions, synaptically released glutamate can exert long-range actions in the cortical microcircuitry. To what extent glutamate spillover leads to direct cross talk among individual synapses remains unclear. We recorded NMDAR-mediated EPSCs in acute hippocampal slices at 35°C by stimulating two independent pathways that converge on the same CA1 pyramidal cell. Activation of a conditioning pathway in the presence of the use-dependent blocker dizocilpine maleate (MK801) resulted in partial NMDA receptor (NMDAR) blockade in the other, silent pathway. This was accompanied by an increase in the rise time of the EPSCs in the conditioning (although not the silent) pathway, implying an increase in diffusional distance from release site to NMDARs. We estimated that up to ∼30% of NMDARs contributing to EPSCs were activated by glutamate released from multiple synaptic sources; however, NMDAR-mediated synaptic cross talk was undetectable when NR2B subunit-containing receptors were blocked (but could be rescued by blocking glutamate uptake). We propose that NR2B-containing NMDARs can detect glutamate arising from multiple synapses, whereas NR2A-containing NMDARs only normally mediate direct synaptic transmission. These NMDAR isoforms thus play complementary roles in sensing global and local glutamate signals, respectively.


The Journal of Neuroscience | 2009

Neuronal Transporters Regulate Glutamate Clearance, NMDA Receptor Activation, and Synaptic Plasticity in the Hippocampus

Annalisa Scimemi; Hua Tian; Jeffrey S. Diamond

In the mammalian brain, the specificity of excitatory synaptic transmission depends on rapid diffusion of glutamate away from active synapses and the powerful uptake capacity of glutamate transporters in astrocytes. The extent to which neuronal glutamate transporters influence the lifetime of glutamate in the extracellular space remains unclear. Here we show that EAAC1, the predominant neuronal glutamate transporter at excitatory synapses in hippocampal area CA1, buffers glutamate released during synaptic events and prolongs the time course of its clearance by astrocytes. EAAC1 does not significantly alter activation of receptors in the synaptic cleft. Instead, it reduces recruitment of perisynaptic/extrasynaptic NR2B-containing NMDARs, thereby facilitating induction of long-term potentiation by short bursts of high-frequency stimulation. We describe novel roles of EAAC1 in regulating glutamate diffusion and propose that NMDARs at different subsynaptic locations can make distinct contributions to the regulation of synaptic strength.


Biophysical Journal | 2008

Receptor Actions of Synaptically Released Glutamate: The Role of Transporters on the Scale from Nanometers to Microns

Kaiyu Zheng; Annalisa Scimemi; Dmitri A. Rusakov

Actions of the excitatory neurotransmitter glutamate inside and outside the synaptic cleft determine the activity of neural circuits in the brain. However, to what degree local glutamate transporters affect these actions on a submicron scale remains poorly understood. Here we focus on hippocampal area CA1, a common subject of synaptic physiology studies. First, we use a two-photon excitation technique to obtain an estimate of the apparent (macroscopic) extracellular diffusion coefficient for glutamate, approximately 0.32 mum(2)/ms. Second, we incorporate this measurement into a Monte Carlo model of the typical excitatory synapse and examine the influence of distributed glutamate transporter molecules on signal transmission. Combined with the results of whole-cell recordings, such simulations argue that, although glutamate transporters have little effect on the activation of synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, this does not rule out the occurrence of up to several dozens of transporters inside the cleft. We further evaluate how the expression pattern of transporter molecules (on the 10-100 nm scale) affects the activation of N-methyl-D-aspartic acid or metabotropic glutamate receptors in the synaptic vicinity. Finally, we extend our simulations to the macroscopic scale, estimating that synaptic activity sufficient to excite principal neurons could intermittently raise extracellular glutamate to approximately 1 muM only at sparse (microns apart) hotspots. Greater rises of glutamate occur only when <5% of transporters are available (for instance, when an astrocyte fails). The results provide a quantitative framework for a better understanding of the relationship between glutamate transporters and glutamate receptor signaling.


The Journal of Neuroscience | 2013

Amyloid-β1–42 Slows Clearance of Synaptically Released Glutamate by Mislocalizing Astrocytic GLT-1

Annalisa Scimemi; James S. Meabon; Randall L. Woltjer; Jane M. Sullivan; Jeffrey S. Diamond; David G. Cook

GLT-1, the major glutamate transporter in the adult brain, is abundantly expressed in astrocytic processes enveloping synapses. By limiting glutamate escape into the surrounding neuropil, GLT-1 preserves the spatial specificity of synaptic signaling. Here we show that the amyloid-β peptide Aβ1–42 markedly prolongs the extracellular lifetime of synaptically released glutamate by reducing GLT-1 surface expression in mouse astrocytes and that this effect is prevented by the vitamin E derivative Trolox. These findings indicate that astrocytic glutamate transporter dysfunction may play an important role in the pathogenesis of Alzheimers disease and suggest possible mechanisms by which several current treatment strategies could protect against the disease.


Frontiers in Cellular Neuroscience | 2014

Structure, function, and plasticity of GABA transporters

Annalisa Scimemi

GABA transporters belong to a large family of neurotransmitter:sodium symporters. They are widely expressed throughout the brain, with different levels of expression in different brain regions. GABA transporters are present in neurons and in astrocytes and their activity is crucial to regulate the extracellular concentration of GABA under basal conditions and during ongoing synaptic events. Numerous efforts have been devoted to determine the structural and functional properties of GABA transporters. There is also evidence that the expression of GABA transporters on the cell membrane and their lateral mobility can be modulated by different intracellular signaling cascades. The strength of individual synaptic contacts and the activity of entire neuronal networks may be finely tuned by altering the density, distribution and diffusion rate of GABA transporters within the cell membrane. These findings are intriguing because they suggest the existence of complex regulatory systems that control the plasticity of GABAergic transmission in the brain. Here we review the current knowledge on the structural and functional properties of GABA transporters and highlight the molecular mechanisms that alter the expression and mobility of GABA transporters at central synapses.


European Journal of Neuroscience | 2006

Tonic GABA(A) receptor-mediated currents in human brain.

Annalisa Scimemi; Anna K. Andersson; Joost H. Heeroma; Joakim Strandberg; Bertil Rydenhag; Andrew W. McEvoy; Maria Thom; Fredrik Asztely; Matthew C. Walker

GABAA receptors can mediate both phasic (synaptic) and tonic (extrasynaptic) forms of inhibition. It has been proposed that tonic inhibition plays a critical part in controlling neuronal and network excitability. Although tonic GABAA receptor‐mediated currents have been well characterized in rodents, their existence in human tissue has yet to be demonstrated. Here we show that tonic currents can be recorded from human tissue obtained from patients undergoing temporal lobectomies. Tonic GABAA receptor‐mediated currents were present in pyramidal cells and interneurons in layer V‐VI of temporal neocortex and granule cells in the dentate gyrus. These tonic currents have cell type‐specific pharmacologies, opening up the possibility of targeted therapeutics.


Molecular Neurobiology | 2009

Determining the Neurotransmitter Concentration Profile at Active Synapses

Annalisa Scimemi; Marco Beato

Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission.


The Journal of Neuroscience | 2012

The Number and Organization of Ca2+ Channels in the Active Zone Shapes Neurotransmitter Release from Schaffer Collateral Synapses

Annalisa Scimemi; Jeffrey S. Diamond

Fast synaptic transmission requires tight colocalization of Ca2+ channels and neurotransmitter vesicles. It is generally thought that Ca2+ channels are expressed abundantly in presynaptic active zones, that vesicles within the same active zone have similar release properties, and that significant vesicle depletion only occurs at synapses with high release probability. Here we show, at excitatory CA3→CA1 synapses in mouse hippocampus, that release from individual vesicles is generally triggered by only one Ca2+ channel and that only few functional Ca2+ channels may be spread in the active zone at variable distances to neighboring neurotransmitter vesicles. Using morphologically realistic Monte Carlo simulations, we show that this arrangement leads to a widely heterogeneous distribution of release probability across the vesicles docked at the active zone, and that depletion of the vesicles closest to Ca2+ channels can account for the Ca2+ dependence of short-term plasticity at these synapses. These findings challenge the prevailing view that efficient synaptic transmission requires numerous presynaptic Ca2+ channels in the active zone, and indicate that the relative arrangement of Ca2+ channels and vesicles contributes to the heterogeneity of release probability within and across synapses and to vesicle depletion at small central synapses with low average release probability.


Nature Communications | 2011

I h -mediated depolarization enhances the temporal precision of neuronal integration

Ivan Pavlov; Annalisa Scimemi; Leonid P. Savtchenko; Dimitri M. Kullmann; Matthew C. Walker

Feed-forward inhibition mediated by ionotropic GABAA receptors contributes to the temporal precision of neuronal signal integration. These receptors exert their inhibitory effect by shunting excitatory currents and by hyperpolarizing neurons. The relative roles of these mechanisms in neuronal computations are, however, incompletely understood. In this study, we show that by depolarizing the resting membrane potential relative to the reversal potential for GABAA receptors, the hyperpolarization-activated mixed cation current (Ih) maintains a voltage gradient for fast synaptic inhibition in hippocampal pyramidal cells. Pharmacological or genetic ablation of Ih broadens the depolarizing phase of afferent synaptic waveforms by hyperpolarizing the resting membrane potential. This increases the integration time window for action potential generation. These results indicate that the hyperpolarizing component of GABAA receptor-mediated inhibition has an important role in maintaining the temporal fidelity of coincidence detection and suggest a previously unrecognized mechanism by which Ih modulates information processing in the hippocampus.

Collaboration


Dive into the Annalisa Scimemi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew C. Walker

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Diamond

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dmitri A. Rusakov

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alioscka A. Sousa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alison L. Barth

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge