Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annalisa Tassone is active.

Publication


Featured researches published by Annalisa Tassone.


Neurobiology of Disease | 2009

Impaired striatal D2 receptor function leads to enhanced GABA transmission in a mouse model of DYT1 dystonia.

Giuseppe Sciamanna; Paola Bonsi; Annalisa Tassone; Dario Cuomo; Anne Tscherter; Maria Teresa Viscomi; Giuseppina Martella; Nutan Sharma; Giorgio Bernardi; David G. Standaert; Antonio Pisani

DYT1 dystonia is caused by a deletion in a glutamic acid residue in the C-terminus of the protein torsinA, whose function is still largely unknown. Alterations in GABAergic signaling have been involved in the pathogenesis of dystonia. We recorded GABA- and glutamate-mediated synaptic currents from a striatal slice preparation obtained from a mouse model of DYT1 dystonia. In medium spiny neurons (MSNs) from mice expressing human mutant torsinA (hMT), we observed a significantly higher frequency, but not amplitude, of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature currents (mIPSCs), whereas glutamate-dependent spontaneous excitatory synaptic currents (sEPSCs) were normal. No alterations were found in mice overexpressing normal human torsinA (hWT). To identify the possible sources of the increased GABAergic tone, we recorded GABAergic Fast-Spiking (FS) interneurons that exert a feed-forward inhibition on MSNs. However, both sEPSC and sIPSC recorded from hMT FS interneurons were comparable to hWT and non-transgenic (NT) mice. In physiological conditions, dopamine (DA) D2 receptor act presynaptically to reduce striatal GABA release. Of note, application of the D2-like receptor agonist quinpirole failed to reduce the frequency of sIPSCs in MSNs from hMT as compared to hWT and NT mice. Likewise, the inhibitory effect of quinpirole was lost on evoked IPSCs both in MSNs and FS interneurons from hMT mice. Our findings demonstrate a disinhibition of striatal GABAergic synaptic activity, that can be at least partially attributed to a D2 DA receptor dysfunction.


Neurobiology of Disease | 2010

Dopamine D2 receptor dysfunction is rescued by adenosine A2A receptor antagonism in a model of DYT1 dystonia.

Francesco Napolitano; Massimo Pasqualetti; Alessandro Usiello; Emanuela Santini; Giulia Pacini; Giuseppe Sciamanna; Francesco d’Errico; Annalisa Tassone; Valeria Di Dato; Giuseppina Martella; Dario Cuomo; Gilberto Fisone; Giorgio Bernardi; Georgia Mandolesi; Nicola B. Mercuri; David G. Standaert; Antonio Pisani

DYT1 dystonia is an inherited disease linked to mutation in the TOR1A gene encoding for the protein torsinA. Although the mechanism by which this genetic alteration leads to dystonia is unclear, multiple lines of clinical evidence suggest a link between dystonia and a reduced dopamine D2 receptor (D2R) availability. Based on this evidence, herein we carried out a comprehensive analysis of electrophysiological, behavioral and signaling correlates of D2R transmission in transgenic mice with the DYT1 dystonia mutation. Electrophysiological recordings from nigral dopaminergic neurons showed a normal responsiveness to D2-autoreceptor function. Conversely, postsynaptic D2R function in hMT mice was impaired, as suggested by the inability of a D2R agonist to re-establish normal corticostriatal synaptic plasticity and supported by the reduced sensitivity to haloperidol-induced catalepsy. Although an in situ hybridization analysis showed normal D1R and D2R mRNA expression levels in the striata of hMT mice, we found a significant decrease of D2R protein, coupled to a reduced ability of D2Rs to activate their cognate Go/i proteins. Of relevance, we found that pharmacological blockade of adenosine A2A receptors (A2ARs) fully restored the impairment of synaptic plasticity observed in hMT mice. Together, our findings demonstrate an important link between torsinA mutation and D2R dysfunction and suggest that A2AR antagonism is able to counteract the deficit in D2R-mediated transmission observed in mutant mice, opening new perspectives for the treatment of this movement disorder.


The Journal of Neuroscience | 2012

Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia

Giuseppe Sciamanna; Annalisa Tassone; Georgia Mandolesi; Francesca Puglisi; Giulia Ponterio; Giuseppina Martella; Graziella Madeo; Giorgio Bernardi; David G. Standaert; Paola Bonsi; Antonio Pisani

Projections from thalamic intralaminar nuclei convey sensory signals to striatal cholinergic interneurons. These neurons respond with a pause in their pacemaking activity, enabling synaptic integration with cortical inputs to medium spiny neurons (MSNs), thus playing a crucial role in motor function. In mice with the DYT1 dystonia mutation, stimulation of thalamostriatal axons, mimicking a response to salient events, evoked a shortened pause and triggered an abnormal spiking activity in interneurons. This altered pattern caused a significant rearrangement of the temporal sequence of synaptic activity mediated by M1 and M2 muscarinic receptors in MSNs, consisting of an increase in postsynaptic currents and a decrease of presynaptic inhibition, respectively. Consistent with a major role of acetylcholine, either lowering cholinergic tone or antagonizing postsynaptic M1 muscarinic receptors normalized synaptic activity. Our data demonstrate an abnormal time window for synaptic integration between thalamostriatal and corticostriatal inputs, which might alter the action selection process, thereby predisposing DYT1 gene mutation carriers to develop dystonic movements.


PLOS ONE | 2011

Developmental Profile of the Aberrant Dopamine D2 Receptor Response in Striatal Cholinergic Interneurons in DYT1 Dystonia

Giuseppe Sciamanna; Annalisa Tassone; Giuseppina Martella; Georgia Mandolesi; Francesca Puglisi; Dario Cuomo; Grazia Madeo; Giulia Ponterio; David G. Standaert; Paola Bonsi; Antonio Pisani

Background DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear. Methods and Results We characterized the alterations in D2 dopamine receptor (D2R) signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT). An abnormal excitatory response to the D2R agonist quinpirole was recorded at postnatal day 14, consisting of a membrane depolarization coupled to an increase in spiking frequency, and persisted unchanged at 3 and 9 months in hMT mice, compared to mice expressing wild-type human torsinA and non-transgenic mice. This response was blocked by the D2R antagonist sulpiride and depended upon G-proteins, as it was prevented by intrapipette GDP-β-S. Patch-clamp recordings from dissociated interneurons revealed a significant increase in the Cav2.2-mediated current fraction at all ages examined. Consistently, chelation of intracellular calcium abolished the paradoxical response to quinpirole. Finally, no gross morphological changes were observed during development. Conclusions These results suggest that an imbalanced striatal dopaminergic/cholinergic signaling occurs early in DYT1 dystonia and persists along development, representing a susceptibility factor for symptom generation.


Neurobiology of Disease | 2012

Cholinergic dysregulation produced by selective inactivation of the dystonia-associated protein torsinA.

Giuseppe Sciamanna; Robert H. Hollis; Chelsea L. Ball; Giuseppina Martella; Annalisa Tassone; Andrea Marshall; Dee S. Parsons; Xinru Li; Fumiaki Yokoi; Lin Zhang; Yuqing Li; Antonio Pisani; David G. Standaert

DYT1 dystonia, a common and severe primary dystonia, is caused by a 3-bp deletion in TOR1A which encodes torsinA, a protein found in the endoplasmic reticulum. Several cellular functions are altered by the mutant protein, but at a systems level the link between these and the symptoms of the disease is unclear. The most effective known therapy for DYT1 dystonia is the use of anticholinergic drugs. Previous studies have revealed that in mice, transgenic expression of human mutant torsinA under a non-selective promoter leads to abnormal function of striatal cholinergic neurons. To investigate what pathological role torsinA plays in cholinergic neurons, we created a mouse model in which the Dyt1 gene, the mouse homolog of TOR1A, is selectively deleted in cholinergic neurons (ChKO animals). These animals do not have overt dystonia, but do have subtle motor abnormalities. There is no change in the number or size of striatal cholinergic cells or striatal acetylcholine content, uptake, synthesis, or release in ChKO mice. There are, however, striking functional abnormalities of striatal cholinergic cells, with paradoxical excitation in response to D2 receptor activation and loss of muscarinic M2/M4 receptor inhibitory function. These effects are specific for cholinergic interneurons, as recordings from nigral dopaminergic neurons revealed normal responses. Amphetamine stimulated dopamine release was also unaltered. These results demonstrate a cell-autonomous effect of Dyt1 deletion on striatal cholinergic function. Therapies directed at modifying the function of cholinergic neurons may prove useful in the treatment of the human disorder.


Movement Disorders | 2014

Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: Role of M1 muscarinic receptors

Marta Maltese; Giuseppina Martella; Graziella Madeo; Irene Fagiolo; Annalisa Tassone; Giulia Ponterio; Giuseppe Sciamanna; Pierre Burbaud; Peter Jefrrey Conn; Paola Bonsi; Antonio Pisani

Broad‐spectrum muscarinic receptor antagonists have represented the first available treatment for different movement disorders such as dystonia. However, the specificity of these drugs and their mechanism of action is not entirely clear. We performed a systematic analysis of the effects of anticholinergic drugs on short‐ and long‐term plasticity recorded from striatal medium spiny neurons from DYT1 dystonia knock‐in (Tor1a+/Δgag) mice heterozygous for ΔE‐torsinA and their controls (Tor1a+/+ mice). Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, trihexyphenydil, biperiden, orphenadrine, and a novel selective M1 antagonist, VU0255035. Tor1a+/Δgag mice exhibited a significant impairment of corticostriatal synaptic plasticity. Anticholinergics had no significant effects on intrinsic membrane properties and on short‐term plasticity of striatal neurons. However, they exhibited a differential ability to restore the corticostriatal plasticity deficits. A complete rescue of both long‐term depression (LTD) and synaptic depotentiation (SD) was obtained by applying the M1‐preferring antagonists pirenzepine and trihexyphenidyl as well as VU0255035. Conversely, the nonselective antagonist orphenadrine produced only a partial rescue of synaptic plasticity, whereas biperiden and ethopropazine failed to restore plasticity. The selectivity for M1 receptors was further demonstrated by their ability to counteract the M1‐dependent potentiation of N‐methyl‐d‐aspartate (NMDA) current recorded from striatal neurons. Our study demonstrates that selective M1 muscarinic receptor antagonism offsets synaptic plasticity deficits in the striatum of mice with the DYT1 dystonia mutation, providing a potential mechanistic rationale for the development of improved antimuscarinic therapies for this movement disorder.


Movement Disorders | 2011

Homeostatic changes of the endocannabinoid system in Parkinson's disease

Valerio Pisani; Graziella Madeo; Annalisa Tassone; Giuseppe Sciamanna; Mauro Maccarrone; Paolo Stanzione; Antonio Pisani

Endocannabinoids (eCBs) are endogenous lipids that bind principally type‐1 and type‐2 cannabinoid (CB1 and CB2) receptors. N‐Arachidonoylethanolamine (AEA, anandamide) and 2‐arachidonoylglycerol (2‐AG) are the best characterized eCBs that are released from membrane phospholipid precursors through multiple biosynthetic pathways. Together with their receptors and metabolic enzymes, eCBs form the so‐called “eCB system”. The later has been involved in a wide variety of actions, including modulation of basal ganglia function. Consistently, both eCB levels and CB1 receptor expression are high in several basal ganglia regions, and more specifically in the striatum and in its target projection areas. In these regions, the eCB system establishes a close functional interaction with dopaminergic neurotransmission, supporting a relevant role for eCBs in the control of voluntary movements. Accordingly, compelling experimental and clinical evidence suggests that a profound rearrangement of the eCB system in the basal ganglia follows dopamine depletion, as it occurs in Parkinsons disease (PD).


Neuropharmacology | 2008

Distinct roles of group I mGlu receptors in striatal function.

Paola Bonsi; Paola Platania; Giuseppina Martella; Graziella Madeo; Daniela Vita; Annalisa Tassone; Giorgio Bernardi; Antonio Pisani

In the recent past, evidence accumulated in favour of a central role of group I metabotropic glutamate (mGlu) receptors, mGlu1 and mGlu5, in the modulation of cell excitability both of striatal medium spiny projection neurons (MSNs) and interneuronal population. Electrophysiological and pharmacological studies have clearly shown that activation of mGlu1 and mGlu5 receptors exerts distinct actions, depending on the neuronal subtype involved. MGlu5 receptor activation mediates the potentiation of NMDA responses in MSNs, and underlies the retrograde inhibitory signaling by endocannabinoids at corticostriatal synapses. Conversely, both group I mGlu receptors are involved in long-term synaptic plasticity of MSNs. Likewise, either mGlu1 or mGlu5 receptors are engaged in shaping the excitability of large cholinergic interneurons, playing different roles in the membrane responses. Differently, although GABAergic parvalbumin-positive, fast-spiking interneurons have been shown to express both group I receptors, only mGlu1 receptor seems to mediate membrane and synaptic responses. This review provides a brief survey of the cellular and synaptic actions of group I mGlu receptors, and discusses the potential relevance of these findings in neostriatal function and motor control.


Neurobiology of Disease | 2014

Regional specificity of synaptic plasticity deficits in a knock-in mouse model of DYT1 dystonia

Giuseppina Martella; Marta Maltese; R. Nisticò; Tommaso Schirinzi; Graziella Madeo; Giuseppe Sciamanna; Giulia Ponterio; Annalisa Tassone; Georgia Mandolesi; Valentina Vanni; M. Pignatelli; Paola Bonsi; Antonio Pisani

DYT1 dystonia is a movement disorder caused by a deletion in the C-terminal of the protein torsinA. It is unclear how torsinA mutation might disrupt cellular processes encoding motor activity, and whether this impairment occurs in specific brain regions. Here, we report a selective impairment of corticostriatal synaptic plasticity in knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) as compared to controls (Tor1a(+/+) mice). In striatal spiny neurons from Tor1a(+/Δgag) mice, high-frequency stimulation failed to induce long-term depression (LTD), whereas long-term potentiation (LTP) exhibited increased amplitude. Of interest, blockade of D2 dopamine receptors (D2Rs) increased LTP in Tor1a(+/+) mice to a level comparable to that measured in Tor1a(+/Δgag) mice and normalized the levels of potentiation across mouse groups. A low-frequency stimulation (LFS) protocol was unable to depotentiate corticostriatal synapses in Tor1a(+/Δgag) mice. Muscarinic M1 acetylcholine receptor (mAChR) blockade rescued plasticity deficits. Additionally, we found an abnormal responsiveness of cholinergic interneurons to D2R activation, consisting in an excitatory response rather than the expected inhibition, further confirming an imbalance between dopaminergic and cholinergic signaling in the striatum. Conversely, synaptic activity and plasticity in the CA1 hippocampal region were unaltered in Tor1a(+/Δgag) mice. Importantly, the M1 mAChR-dependent enhancement of hippocampal LTP was unaffected in both genotypes. Similarly, both basic properties of dopaminergic nigral neurons and their responses to D2R activation were normal. These results provide evidence for a regional specificity of the electrophysiological abnormalities observed and demonstrate the reproducibility of such alterations in distinct models of DYT1 dystonia.


Neuropharmacology | 2011

Activation of 5-HT6 receptors inhibits corticostriatal glutamatergic transmission

Annalisa Tassone; Graziella Madeo; Tommaso Schirinzi; Daniela Vita; Francesca Puglisi; Giulia Ponterio; Franco Borsini; Antonio Pisani; Paola Bonsi

We investigated the effect of 5-HT6 receptor subtype activation on glutamatergic transmission by means of whole-cell patch-clamp electrophysiological recordings from medium spiny neurons of the striatum and layer V pyramidal neurons of the prefrontal cortex. To this aim, we took advantage of a novel ligand, ST1936, showing nM affinity and agonist activity at the 5-HT6 receptor subtype. Our data show that 5-HT6 receptor activation by ST1936 reduces the frequency of spontaneous excitatory postsynaptic currents, with an IC50 of 1.3 μM. Moreover, 5-HT6 receptor activation also reduced the amplitude of spontaneous excitatory postsynaptic currents recorded from medium spiny neurons, suggesting a mechanism of action involving postsynaptic 5-HT6 receptors, as further confirmed by the paired-pulse analysis on evoked excitatory postsynaptic currents and by recordings of miniature glutamatergic events. The inhibitory effect of ST1936 on glutamatergic transmission was prevented by the selective 5-HT6 receptor antagonist SB258585 and mimicked by a different agonist, WAY-181187. Conversely, in the cortex ST1936 reduced the frequency, but not the amplitude, of spontaneous excitatory postsynaptic currents suggesting a presynaptic or indirect effect of the 5-HT6 receptor.

Collaboration


Dive into the Annalisa Tassone's collaboration.

Top Co-Authors

Avatar

Antonio Pisani

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Sciamanna

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Giuseppina Martella

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Paola Bonsi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Giulia Ponterio

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Graziella Madeo

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

David G. Standaert

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Georgia Mandolesi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Giorgio Bernardi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Marta Maltese

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge