Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annalisa Vetro is active.

Publication


Featured researches published by Annalisa Vetro.


Journal of Medical Genetics | 2007

Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients

Manuela De Gregori; Roberto Ciccone; Pamela Magini; Tiziano Pramparo; Stefania Gimelli; Jole Messa; Francesca Novara; Annalisa Vetro; Elena Rossi; Paola Maraschio; Maria Clara Bonaglia; Cecilia Anichini; Giovanni Battista Ferrero; Margherita Silengo; Elisa Fazzi; Adriana Zatterale; Rita Fischetto; C. Previderè; Serena Belli; Alessandra Turci; Giuseppe Calabrese; Franca Bernardi; Emanuela Meneghelli; Mariluce Riegel; Mariano Rocchi; Silvana Guerneri; Faustina Lalatta; Leopoldo Zelante; Corrado Romano; Marco Fichera

Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as “balanced” by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a “chromosomal phenotype” and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with >3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome-wide array CGH may be advisable in all carriers of “balanced” CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customised platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis.


The New England Journal of Medicine | 2014

Constitutive Activation of PKA Catalytic Subunit in Adrenal Cushing's Syndrome

Felix Beuschlein; Martin Fassnacht; Guillaume Assié; Davide Calebiro; Constantine A. Stratakis; Andrea Osswald; Cristina L. Ronchi; Thomas Wieland; Silviu Sbiera; Fabio R. Faucz; Katrin Schaak; Anett Schmittfull; Thomas Schwarzmayr; Olivia Barreau; Delphine Vezzosi; Marthe Rizk-Rabin; Ulrike Zabel; Eva Szarek; Paraskevi Salpea; Antonella Forlino; Annalisa Vetro; Orsetta Zuffardi; Caroline Kisker; Susanne Diener; Thomas Meitinger; Martin J. Lohse; Martin Reincke; Jérôme Bertherat; Tim M. Strom; Bruno Allolio

BACKGROUND Corticotropin-independent Cushings syndrome is caused by tumors or hyperplasia of the adrenal cortex. The molecular pathogenesis of cortisol-producing adrenal adenomas is not well understood. METHODS We performed exome sequencing of tumor-tissue specimens from 10 patients with cortisol-producing adrenal adenomas and evaluated recurrent mutations in candidate genes in an additional 171 patients with adrenocortical tumors. We also performed genomewide copy-number analysis in 35 patients with cortisol-secreting bilateral adrenal hyperplasias. We studied the effects of these genetic defects both clinically and in vitro. RESULTS Exome sequencing revealed somatic mutations in PRKACA, which encodes the catalytic subunit of cyclic AMP-dependent protein kinase (protein kinase A [PKA]), in 8 of 10 adenomas (c.617A→C in 7 and c.595_596insCAC in 1). Overall, PRKACA somatic mutations were identified in 22 of 59 unilateral adenomas (37%) from patients with overt Cushings syndrome; these mutations were not detectable in 40 patients with subclinical hypercortisolism or in 82 patients with other adrenal tumors. Among 35 patients with cortisol-producing hyperplasias, 5 (including 2 first-degree relatives) carried a germline copy-number gain (duplication) of the genomic region on chromosome 19 that includes PRKACA. In vitro studies showed impaired inhibition of both PKA catalytic subunit mutants by the PKA regulatory subunit, whereas cells from patients with germline chromosomal gains showed increased protein levels of the PKA catalytic subunit; in both instances, basal PKA activity was increased. CONCLUSIONS Genetic alterations of the catalytic subunit of PKA were found to be associated with human disease. Germline duplications of this gene resulted in bilateral adrenal hyperplasias, whereas somatic PRKACA mutations resulted in unilateral cortisol-producing adrenal adenomas. (Funded by the European Commission Seventh Framework Program and others.).


Blood | 2013

Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1

Immacolata Andolfo; Seth L. Alper; Lucia De Franceschi; Carla Auriemma; Roberta Russo; Luigia De Falco; Fara Vallefuoco; Maria Rosaria Esposito; David H. Vandorpe; Boris E. Shmukler; Rupa Narayan; Donatella Montanaro; Maria D'Armiento; Annalisa Vetro; Ivan Limongelli; Orsetta Zuffardi; Bertil Glader; Stanley L. Schrier; Carlo Brugnara; Gordon W. Stewart; Jean Delaunay; Achille Iolascon

Autosomal dominant dehydrated hereditary stomatocytosis (DHSt) usually presents as a compensated hemolytic anemia with macrocytosis and abnormally shaped red blood cells (RBCs). DHSt is part of a pleiotropic syndrome that may also exhibit pseudohyperkalemia and perinatal edema. We identified PIEZO1 as the disease gene for pleiotropic DHSt in a large kindred by exome sequencing analysis within the previously mapped 16q23-q24 interval. In 26 affected individuals among 7 multigenerational DHSt families with the pleiotropic syndrome, 11 heterozygous PIEZO1 missense mutations cosegregated with disease. PIEZO1 is expressed in the plasma membranes of RBCs and its messenger RNA, and protein levels increase during in vitro erythroid differentiation of CD34(+) cells. PIEZO1 is also expressed in liver and bone marrow during human and mouse development. We suggest for the first time a correlation between a PIEZO1 mutation and perinatal edema. DHSt patient red cells with the R2456H mutation exhibit increased ion-channel activity. Functional studies of PIEZO1 mutant R2488Q expressed in Xenopus oocytes demonstrated changes in ion-channel activity consistent with the altered cation content of DHSt patient red cells. Our findings provide direct evidence that R2456H and R2488Q mutations in PIEZO1 alter mechanosensitive channel regulation, leading to increased cation transport in erythroid cells.


PLOS Genetics | 2011

Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome

Maria Clara Bonaglia; Roberto Giorda; Silvana Beri; Cristina De Agostini; Francesca Novara; Marco Fichera; Lucia Grillo; Ornella Galesi; Annalisa Vetro; Roberto Ciccone; Maria Teresa Bonati; Sabrina Giglio; Renzo Guerrini; Sara Osimani; Susan Marelli; Claudio Zucca; Rita Grasso; Renato Borgatti; Elisa Mani; Cristina Motta; Massimo Molteni; Corrado Romano; Donatella Greco; Santina Reitano; Anna Baroncini; Elisabetta Lapi; Antonella Cecconi; Giulia Arrigo; Maria Grazia Patricelli; Chiara Pantaleoni

In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS.


European Journal of Medical Genetics | 2008

A 12 Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea

Elena Rossi; Anna Pia Verri; Maria Grazia Patricelli; Valeria Destefani; Ivana Ricca; Annalisa Vetro; Roberto Ciccone; Roberto Giorda; Daniela Toniolo; Paola Maraschio; Orsetta Zuffardi

An interstitial deletion of about 12Mb at 7q33-q36 was found in an adult female affected by autism and primary amenorrhea. Two genes, CNTNAP2 and NOBOX, both contained within the deletion region, have been recently associated with autism susceptibility and premature ovarian failure, respectively. Our findings reinforce the hypothesis that haploinsufficiency of both these genes is sufficient for autism development and occurrence of primary amenorrhea, confirming a previous case in which CNTNAP2 had been disrupted by a chromosome inversion and possibly enlarging the phenotype of ovarian function disturbances already demonstrated for NOBOX mutations.


Human Mutation | 2012

The Introduction of Arrays in Prenatal Diagnosis : A Special Challenge

Annalisa Vetro; Katelijne Bouman; Ros Hastings; Dominic McMullan; Joris Vermeesch; Konstantin Miller; Birgit Sikkema-Raddatz; David H. Ledbetter; Orsetta Zuffardi; Conny M. A. van Ravenswaaij-Arts

Genome‐wide arrays are rapidly replacing conventional karyotyping in postnatal cytogenetic diagnostics and there is a growing request for arrays in the prenatal setting. Several studies have documented 1–3% additional abnormal findings in prenatal diagnosis with arrays compared to conventional karyotyping. A recent meta‐analysis demonstrated that 5.2% extra diagnoses can be expected in fetuses with ultrasound abnormalities. However, no consensus exists as to whether the use of genome‐wide arrays should be restricted to pregnancies with ultrasound abnormalities, performed in all women undergoing invasive prenatal testing or offered to all pregnant women. Moreover, the interpretation of array results in the prenatal situation is challenging due to the large numbers of copy number variants with no major phenotypic effect. This also raises the question of what, or what not to report, for example, how to deal with unsolicited findings. These issues were discussed at a working group meeting that preceded the European Society of Human Genetics 2011 Conference in Amsterdam. This article is the result of this meeting and explores the introduction of genome‐wide arrays into routine prenatal diagnosis. We aim to give some general recommendations on how to develop practical guidelines that can be implemented in the local setting and that are consistent with the emerging international consensus. Hum Mutat 33:923–929, 2012.


The New England Journal of Medicine | 2014

PRKACB and Carney Complex

Antonella Forlino; Annalisa Vetro; Livia Garavelli; Roberto Ciccone; Edra London; Constantine A. Stratakis; Orsetta Zuffardi

The authors report that a gain of function in the catalytic subunit beta of the cyclic AMP–dependent protein kinase (protein kinase A), resulting from the presence of four copies of PRKACB (instead of the normal two), may lead to a Carney complex phenotype.


Clinical Genetics | 2012

Identification of de novo mutations and rare variants in hypoplastic left heart syndrome

Maria Iascone; Roberto Ciccone; L Galletti; D Marchetti; F Seddio; Ar Lincesso; Laura Pezzoli; Annalisa Vetro; D Barachetti; L Boni; D Federici; Am Soto; Jv Comas; P Ferrazzi; Orsetta Zuffardi

Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso AR, Pezzoli L, Vetro A, Barachetti D, Boni L, Federici D, Soto AM, Comas JV, Ferrazzi P, Zuffardi O. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome.


Journal of Medical Genetics | 2011

XX males SRY negative: a confirmed cause of infertility

Annalisa Vetro; Roberto Ciccone; Roberto Giorda; Maria Grazia Patricelli; Erika Della Mina; Antonella Forlino; Orsetta Zuffardi

Background SOX9 is a widely expressed transcription factor playing several relevant functions during development and essential for testes differentiation. It is considered to be the direct target gene of the protein encoded by SRY and its overexpression in an XX murine gonad can lead to male development in the absence of Sry. Recently, a family was reported with a 178 kb duplication in the gene desert region ending about 500 kb upstream of SOX9 in which 46,XY duplicated persons were completely normal and fertile whereas the 46,XX ones were males who came to clinical attention because of infertility. Methods and results We report a family with two azoospermic brothers, both 46,XX, SRY negative, having a 96 kb triplication 500 kb upstream of SOX9. Both subjects have been analyzed trough oligonucleotide array-CGH and the triplication was confirmed and characterised through qPCR, defining the minimal region of amplification upstream of SOX9 associated with 46,XX infertile males, SRY negative. Conclusions Our results confirm that even in absence of SRY, complete male differentiation may occur, possibly driven by overexpression of SOX9 in the gonadal ridge, as a consequence of the amplification of a gene desert region. We hypothesize that this region contains gonadal specific long-range regulation elements whose alteration may impair the normal sex development. Our data show that normal XX males, with alteration in copy number or, possibly, in the critical sequence upstream to SOX9 are a new category of infertility inherited in a dominant way with expression limited to the XX background.


Prenatal Diagnosis | 2011

Current controversies in prenatal diagnosis 3: is conventional chromosome analysis necessary in the post‐array CGH era?

The-Hung Bui; Annalisa Vetro; Orsetta Zuffardi; Lisa G. Shaffer

Microscopic chromosome analysis of cultured cells has been regarded as the standard method for prenatal cytogenetic diagnosis since its first application to prenatal testing in 1966 (Steele and Breg, 1966) and has become routine since the first use of chromosome banding (karyotyping) in the early 1970s. Karyotyping has proved to be highly reliable for the diagnosis of numerical chromosome abnormalities (aneuploidies) and large structural rearrangements [>5–10 million base (Mb) pairs] in fetal cells obtained invasively by either amniocentesis in the second trimester of pregnancy or chorionic villus sampling in the first trimester. The supremacy of karyotyping in prenatal cytogenetic diagnosis has been challenged by the introduction of molecular cytogenetic methods including interphase fluorescence in situ hybridization (FISH), quantitative fluorescent PCR and more recently, multiplex ligation-dependent probe amplification (Boormans et al., 2010) for the rapid detection of aneuploidies for chromosomes 13, 18, 21 and the sex chromosomes (Shaffer and Bui, 2007). In addition to the common aneuploidies, many submicroscopic chromosomal rearrangements that lead to copy-number gains or losses have been shown to cause distinctive and recognizable clinical phenotypes. The sensitivity of detection of copy-number alterations has increased significantly with the advent of microarraybased comparative genomic hybridization (aCGH) with its commercially available multiple platforms. Together with improved assemblies and annotation of genome sequence data, these methods allow for the rapid identification of new syndromes that are associated with submicroscopic genomic changes in children with idiopathic intellectual disabilities, autism, developmental

Collaboration


Dive into the Annalisa Vetro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ioannis Papoulidis

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Loretta Thomaidis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge