Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annamalai is active.

Publication


Featured researches published by Annamalai.


IEEE Communications Magazine | 2002

Wireless communications: past events and a future perspective

Theodore S. Rappaport; Annamalai Annamalai; R. M. Buehrer; William H. Tranter

the 21 st century. ireless communications has emerged as one of the largest sectors of the telecommunications ,industry, evolving from a niche business in the last decade to one of the most promising areas for growth in the 21st cenW tury. This article explores some of the key technological advances and approaches that are now emerging as core components for wireless solutions of the future.


IEEE Transactions on Communications | 2000

Equal-gain diversity receiver performance in wireless channels

Annamalai Annamalai; Chinthananda Tellambura; Vijay K. Bhargava

Performance analysis of equal-gain combining (EGC) diversity systems is notoriously difficult only more so given that the closed-form probability density function (PDF) of the EGC output is only available for dual-diversity combining in Rayleigh fading. A powerful frequency-domain approach is therefore developed in which the average error-rate integral is transformed into the frequency domain, using Parsevals theorem. Such a transformation eliminates the need for computing (or approximating) the EGC output PDF (which is unknown), but instead requires the knowledge of the corresponding characteristic function (which is readily available). The frequency-domain method also circumvents the need to perform multiple-fold convolution integral operations, usually encountered in the calculation of the PDF of the sum of the received signal amplitudes. We then derive integral expressions for the average symbol-error rate of an arbitrary two-dimensional signaling scheme, with EGC reception in Rayleigh, Rician, Nakagami-m (1960), and Nakagami-q fading channels. For practically important cases of second- and third-order diversity systems in Nakagami fading, both coherent and noncoherent detection methods for binary signaling are analyzed using the Appell hypergeometric function. A number of closed-form solutions are derived in which the results put forward by Zhang (see ibid., vol.45, p.270-73, 1997) are shown to be special cases.


IEEE Transactions on Communications | 2001

Error rates for Nakagami-m fading multichannel reception of binary and M-ary signals

Annamalai Annamalai; Chintha Tellambura

This paper derives new closed-form formulas for the error probabilities of single and multichannel communications in Rayleigh and Nakagami-m (1960) fading. Closed-form solutions to three generic trigonometric integrals are presented as part of the main result, providing a unified method for the derivation of exact closed-form average symbol-error probability expressions for binary and M-ary signals with L independent channel diversity reception. Both selection-diversity and maximal-ratio combining (MRC) techniques are considered. The results are generally applicable for arbitrary two-dimensional signal constellations that have polygonal decision regions operating in a slow Nakagami-m fading environments with positive integer fading severity index. MRC with generically correlated fading is also considered. The new expressions are applicable in many cases of practical interest. The closed-form expressions derived for a single channel reception case can be extended to provide an approximation for the error rates of binary and M-ary signals that employ an equal-gain combining diversity receiver.


IEEE Transactions on Communications | 2001

Simple and accurate methods for outage analysis in cellular mobile radio systems-a unified approach

Annamalai Annamalai; Chintha Tellambura; Vijay K. Bhargava

Two unified expressions for computing the refined outage criterion (which considers the receiver noise) in cellular mobile radio systems are derived using the Laplace and Fourier inversion formulas. Since these expressions do not impose any restrictions on the signal statistics while being easy to program, they provide a powerful tool for outage analysis over generalized fading channels. We also assess compatibility and applicability of previously published approaches that treat noise as cochannel interference (noise-limited model) or consider a minimum detectable receiver signal threshold and receiver noise. The outage probability in an interference-limited case can be evaluated directly by setting the minimum power threshold to zero. The analysis of correlated interferers is presented. Results are also developed for a random number of interferers. Several new closed-form expressions for the outage probability are also derived. Some previous studies have suggested approximating Rician desired signal statistics by a Nakagami-m (1960) model (with positive integer fading severity index) to circumvent the difficulty in evaluating the outage in Rician fading. The suitability of this approximation is examined by comparing the outage performance under these two fading conditions. Surprisingly, some basic results for Nakagami-m channel have been overlooked, which has led to misleadingly optimistic results with the Nakagami-m approximation model. However, similar approximation for the interferer signals is valid.


IEEE Transactions on Communications | 2001

Unified analysis of switched diversity systems in independent and correlated fading channels

Chinthananda Tellambura; Annamalai Annamalai; Vijay K. Bhargava

The moment generating function (MGF) of the signal power at the output of dual-branch switch-and-stay selection diversity (SSD) combiners is derived. The first-order derivative of the MGF with respect to the switching threshold is also derived. These expressions are obtained for the general case of correlated fading and nonidentical diversity branches, and hold for any common fading distributions (e.g., Rayleigh, Nakagami-m, Rician, Nakagami-q). The MGF yields the performance (bit or symbol error probability) of a broad class of coherent, differentially coherent and noncoherent digital modulation formats with SSD reception. The optimum switching threshold (in a minimum error rate sense) is obtained by solving a nonlinear equation which is formed by using the first-order derivative of the MGF. This nonlinear equation can be simplified for several special cases. For independent and identically distributed diversity branches, the optimal switching threshold in closed form is derived for three generic forms of the conditional error probability. For correlated Rayleigh or Nakagami-m fading with identical branches, the optimal switching threshold in closed form is derived for the noncoherent binary modulation formats. We show previously published results as special cases of our unified expression. Selected numerical examples are presented and discussed.


IEEE Transactions on Communications | 1999

Exact evaluation of maximal-ratio and equal-gain diversity receivers for M-ary QAM on Nakagami fading channels

Annamalai Annamalai; Chintha Tellambura; Vijay K. Bhargava

Exact integral expressions are derived for calculating the symbol-error rate (SER) of multilevel quadrature amplitude modulation (MQAM) in conjunction with L-fold antenna diversity on arbitrary Nakagami fading channel. Both maximal-ratio combining (MRC) (in independent and correlated fading) and equal-gain combining (EGC) predetection (in independent fading) diversity techniques have been considered. Exact closed-form SER expressions for two restricted Nakagami fading cases (MRC reception) are also derived. An exact analysis of EGC for MQAM has not been reported previously, despite its practical interest. Remarkably, the exact SER integrals can also be replaced by a finite-series approximation formula. A useful procedure for computing the confluent hypergeometric series is also presented.


IEEE Transactions on Wireless Communications | 2002

Analysis of hybrid selection/maximal-ratio diversity combiners with Gaussian errors

Annamalai Annamalai; Chintha Tellambura

The paper examines the impact of Gaussian distributed weighting errors (in the channel gain estimates used for coherent combination) on both the output statistics of a hybrid selection/maximal-ratio (SC/MRC) receiver and the degradation of the average symbol-error rate (ASER) performance as compared with the ideal case. New expressions are derived for the probability density function, cumulative distribution function and moment generating function (MGF) of the coherent hybrid SC/MRC combiner output signal-to-noise ratio (SNR). The MGF is then used to derive exact, closed-form, ASER expressions for binary and M-ary modulations in conjunction a nonideal hybrid SC/MRC receiver in a Rayleigh fading environment. Results for both selection combining (SC) and maximal-ratio combining (MRC) are obtained as limiting cases. Additionally, the effect of the weighting errors on both the outage rate of error probability and the average combined SNR is investigated. These analytical results provide insights into the tradeoff between diversity gain and combination losses, in concert with increasing orders of diversity branches in an energy-sharing communication system.


international conference on wireless communications and mobile computing | 2011

Unified analysis of energy detection of unknown signals over generalized fading channels

Annamalai Annamalai; Oluwatobi Olabiyi; Shumon Alam; Olusegun O. Odejide; Dhadesugoor R. Vaman

Reliable spectrum sensing is the very task upon which the entire operation of cognitive radio rests. Blind sensing of spectral-holes using a radiometer (energy detectors) is one of the solutions that have been proposed for enabling opportunistic spectrum access. This article revisits the problem of energy detection of an unknown deterministic signal over a myriad of fading environments. Specifically, a new approach (based on the canonical series representations of the generalized Marcum Q-function of real order in conjunction with the derivatives of the moment generating function of signal-to-noise ratio) is proposed to analyze the performance of maximal-ratio combining (MRC) and square-law combining (SLC) energy detectors with independent but non-identically distributed (i.n.d) fading statistics, including Rice and mixed-fading channels. Our analytical framework is also capable of treating the Nakagami-m channels with non-integer fading severity indices as well as halfodd integer values for the time-bandwidth product u. Many of these cases were either intractable with the classical probability density function/contour integral approaches, or that heretofore had resisted simple/computationally efficient solutions. Selected numerical results are also provided for the receiver operating characteristic (ROC) of MRC and SLC diversity energy detectors over Rice and Nakagami-m channels.


IEEE Transactions on Communications | 1998

Analysis and optimization of adaptive multicopy transmission ARQ protocols for time-varying channels

Annamalai Annamalai; Vijay K. Bhargava

This paper outlines an efficient method to concurrently optimize a multiplicity of design variables for continuous selective-repeat (SR) and go-back-N (GBN) automatic repeat request (ARQ) strategies, both in noiseless and noisy feedback channels. For these ARQ protocols, we adapt either the number of identical message blocks sent in each transmission (in the case of GBN scheme) or the number of copies of a block retransmitted to handle a NACKed codeword (for the SR protocol) dynamically to the estimated channel condition. The channel state information is obtained by counting the contiguous acknowledgment (ACK or NACK) messages. Exploiting the asymptotic properties of the steady state probability expressions, we show analytically that the optimum solution indeed lies in the infinite space. Subsequently, a simple expression to estimate the suboptimal design parameters is suggested. Our approach of minimizing the mean-square error function yields to a quantitative study of the appropriateness of the selected parameters. Exact analytical expressions that allows us to compute the throughput crossover probability between any two arbitrary multicopy transmission modes are derived. The results provide fundamental insights into how these key parameters interact and determine the system performance.


IEEE Transactions on Communications | 2003

Closed form and infinite series solutions for the MGF of a dual-diversity selection combiner output in bivariate Nakagami fading

Chinthananda Tellambura; Annamalai Annamalai; Vijay K. Bhargava

Using a circular contour integral representation for the generalized Marcum-Q function, Q/sub m/(a,b), we derive a new closed-form formula for the moment generating function (MGF) of the output signal power of a dual-diversity selection combiner (SC) in bivariate (correlated) Nakagami-m fading with positive integer fading severity index. This result involves only elementary functions and holds for any value of the ratio a/b in Q/sub m/(a,b). As an aside, we show that previous integral representations for Q/sub m/(a,b) can be obtained from a contour integral and also derive a new, single finite-range integral representation for Q/sub m/(a,b). A new infinite series expression for the MGF with arbitrary m is also derived. These MGFs can be readily used to unify the evaluation of average error performance of the dual-branch SC for coherent, differentially coherent, and noncoherent communications systems.

Collaboration


Dive into the Annamalai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vijay K. Bhargava

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge