Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annamaria D'Aprile is active.

Publication


Featured researches published by Annamaria D'Aprile.


Hepatology | 2007

Hepatitis C virus protein expression causes calcium‐mediated mitochondrial bioenergetic dysfunction and nitro‐oxidative stress

Claudia Piccoli; Rosella Scrima; Giovanni Quarato; Annamaria D'Aprile; Maria Ripoli; Lucia Lecce; Domenico Boffoli; Darius Moradpour; Nazzareno Capitanio

Hepatitis C virus (HCV) infection induces a state of oxidative stress that is more pronounced than that in many other inflammatory diseases. In this study we used well‐characterized cell lines inducibly expressing the entire HCV open‐reading frame to investigate the impact of viral protein expression on cell bioenergetics. It was shown that HCV protein expression has a profound effect on cell oxidative metabolism, with specific inhibition of complex I activity, depression of mitochondrial membrane potential and oxidative phosphorylation coupling efficiency, increased production of reactive oxygen and nitrogen species, as well as loss of the Pasteur effect. Importantly, all these effects were causally related to mitochondrial calcium overload, as inhibition of mitochondrial calcium uptake completely reversed the observed bioenergetic alterations. Conclusion: Expression of HCV proteins causes deregulation of mitochondrial calcium homeostasis. This event occurs upstream of further mitochondrial dysfunction, leading to alterations in the bioenergetic balance and nitro‐oxidative stress. These observations provide new insights into the pathogenesis of hepatitis C and may offer new opportunities for therapeutic intervention. (HEPATOLOGY 2007.)


Journal of Virology | 2010

Hepatitis C Virus-Linked Mitochondrial Dysfunction Promotes Hypoxia-Inducible Factor 1α-Mediated Glycolytic Adaptation

Maria Ripoli; Annamaria D'Aprile; Giovanni Quarato; Magdalena Sarasin-Filipowicz; Jérôme Gouttenoire; Rosella Scrima; Olga Cela; Domenico Boffoli; Markus H. Heim; Darius Moradpour; Nazzareno Capitanio; Claudia Piccoli

ABSTRACT Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its α subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1α was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1α stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1α. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1α. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.


FEBS Letters | 2007

The hypoxia-inducible factor is stabilized in circulating hematopoietic stem cells under normoxic conditions

Claudia Piccoli; Annamaria D'Aprile; Maria Ripoli; Rosella Scrima; Domenico Boffoli; Antonio Tabilio; Nazzareno Capitanio

The hypoxia‐inducible factor (HIF) transcriptional system enables cell adaptation to limited O2 availability, transducing this signal into patho‐physiological responses such as angiogenesis, erythropoiesis, vasomotor control, and altered energy metabolism, as well as cell survival decisions. However, other factors beyond hypoxia are known to activate this pleiotropic transcription factor. The aim of this study was to characterize HIF in human hematopoietic stem cells (HSCs) and evidence is provided that granulocyte colony stimulating factor‐mobilized CD34+‐ and CD133+‐HSCs express a stabilized cytoplasmic form of HIF‐1α under normoxic conditions. It is shown that HIF‐1α stabilization correlates with down‐regulation of the tumour suppressor von Hippel‐Lindau protein (pVHL) and is positively controlled by NADPH‐oxidase‐dependent production of reactive oxygen species, indicating a specific O2‐independent post‐transcriptional control of HIF in mobilized HSCs. This novel finding is discussed in the context of the proposed role of HIF as a mediator of progenitor cell recruitment to injured ischemic tissues and/or in the control of the maintenance of the undifferentiated state.


Biochimica et Biophysica Acta | 2009

HCV infection induces mitochondrial bioenergetic unbalance: Causes and effects

Claudia Piccoli; Giovanni Quarato; Maria Ripoli; Annamaria D'Aprile; Rosella Scrima; Olga Cela; Domenico Boffoli; Darius Moradpour; Nazzareno Capitanio

Cells infected by the hepatitis C virus (HCV) are characterized by endoplasmic reticulum stress, deregulation of the calcium homeostasis and unbalance of the oxido-reduction state. In this context, mitochondrial dysfunction proved to be involved and is thought to contribute to the outcome of the HCV-related disease. Here, we propose a temporal sequence of events in the HCV-infected cell whereby the primary alteration consists of a release of Ca(2+) from the endoplasmic reticulum, followed by uptake into mitochondria. This causes successive mitochondrial alterations comprising generation of reactive oxygen and nitrogen species and impairment of the oxidative phosphorylation. A progressive adaptive response results in an enhancement of the glycolytic metabolism sustained by up-regulation of the hypoxia inducible factor. Pathogenetic implications of the model are discussed.


Hepatology | 2012

The cyclophilin inhibitor alisporivir prevents hepatitis C virus-mediated mitochondrial dysfunction.

Giovanni Quarato; Annamaria D'Aprile; Bruno Gavillet; Grégoire Vuagniaux; Darius Moradpour; Nazzareno Capitanio; Claudia Piccoli

Alisporivir (Debio‐025) is an analogue of cyclosporine A and represents the prototype of a new class of non‐immunosuppressive cyclophilin inhibitors. In vitro and in vivo studies have shown that alisporivir inhibits hepatitis C virus (HCV) replication, and ongoing clinical trials are exploring its therapeutic potential in patients with chronic hepatitis C. Recent data suggest that the antiviral effect is mediated by inhibition of cyclophilin A, which is an essential host factor in the HCV life cycle. However, alisporivir also inhibits mitochondrial permeability transition by binding to cyclophilin D. Because HCV is known to affect mitochondrial function, we explored the effect of alisporivir on HCV protein‐mediated mitochondrial dysfunction. Through the use of inducible cell lines, which allow to investigate the effects of HCV polyprotein expression independent from viral RNA replication and which recapitulate the major alterations of mitochondrial bioenergetics observed in infectious cell systems, we show that alisporivir prevents HCV protein‐mediated decrease of cell respiration, collapse of mitochondrial membrane potential, overproduction of reactive oxygen species and mitochondrial calcium overload. Strikingly, some of the HCV‐mediated mitochondrial dysfunctions could even be rescued by alisporivir. Conclusion: These observations provide new insights into the pathogenesis of HCV‐related liver disease and reveal an additional mechanism of action of alisporivir that is likely beneficial in the treatment of chronic hepatitis C. (HEPATOLOGY 2012)


Journal of Medical Genetics | 2008

Coexistence of mutations in PINK1 and mitochondrial DNA in early onset parkinsonism

Claudia Piccoli; Maria Ripoli; Giovanni Quarato; Rosella Scrima; Annamaria D'Aprile; Domenico Boffoli; Maurizio Margaglione; Chiara Criscuolo; G. De Michele; A.M. Sardanelli; Sergio Papa; Nazzareno Capitanio

Aims and background: Various genes have been identified for monogenic disorders resembling Parkinson’s disease. The products of some of these genes are associated with mitochondria and have been implicated in cellular protection against oxidative damage. In the present study we analysed fibroblasts from a patient carrying the homozygous mutation p.W437X in the PTEN-induced kinase 1 (PINK1), which manifested a very early onset parkinsonism. Results: Patient’s fibroblasts did not show variation in the mtDNA copy number or in the expression of the oxidative phosphorylation complexes. Sequence analysis of the patient’s mtDNA presented two new missense mutations in the ND5 (m.12397A>G, p.T21A) and ND6 (m. 14319T>C, p.N119D) genes coding for two subunits of complex I. The two mutations were homoplasmic in both the patient and the patient’s mother. Patient’s fibroblasts resulted in enhanced constitutive production of the superoxide anion radical that was abrogated by inhibitor of the complex I. Moreover enzyme kinetic analysis of the NADH:ubiquinone oxidoreductase showed changes in the substrates affinity. Conclusion: To our knowledge, this is the first report showing co-segregation of a Parkinson’s disease related nuclear gene mutation with mtDNA mutation(s). Our observation might shed light on the clinical heterogeneity of the hereditary cases of Parkinson’s disease, highlighting the hitherto unappreciated impact of coexisting mtDNA mutations in determining the development and the clinical course of the disease.


Stem Cells and Development | 2012

Hematopoietic Stem/Progenitor Cells Express Functional Mitochondrial Energy-Dependent Cystic Fibrosis Transmembrane Conductance Regulator

Donatella Piro; Claudia Piccoli; Lorenzo Guerra; Francesca Sassone; Annamaria D'Aprile; Maria Favia; Stefano Castellani; Sante Di Gioia; Silvia Lepore; Maria Luisa Garavaglia; Teresa Trotta; Angela Bruna Maffione; Valeria Casavola; Giuliano Meyer; Nazzareno Capitanio; Massimo Conese

Bone marrow-derived hematopoietic stem/progenitor cells (HSPCs) encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine. Cystic fibrosis (CF) is one of the diseases whose hope of cure relies on the successful application of cell-based gene therapy. This study was aimed at characterizing murine HSPCs on the basis of their bioenergetic competence and CF transmembrane conductance regulator (CFTR) expression. Positively immunoselected Sca-1(+) HSPCs encompassed 2 populations distinguished by their different size, Sca-1 expression and mitochondrial content. The smaller were the cells, the higher was Sca-1 expression and the lower was the intracellular density of functional mitochondria. Reverse transcription-polymerase chain reaction and western blotting revealed that HSPCs expressed CFTR mRNA and protein, which was also functional, as assessed by spectrofluorimetric and patch-clamp techniques. Inhibition of mitochondrial oxidative phosphorylation by oligomycin resulted in a 70% decrease of both the intracelluar adenosine triphosphate content and CFTR-mediated channel activity. Finally, HSPCs with lower Sca-1 expression and higher mitochondrial content displayed higher CFTR levels. Our findings identify 2 subpopulations in HSPCs and unveil a so-far unappreciated relationship between bioenergetic metabolism and CFTR in HSPC biology.


Stem Cells | 2014

Hematopoietic Stem/Progenitor Cells Express Myoglobin and Neuroglobin: Adaptation to Hypoxia or Prevention from Oxidative Stress?

Annamaria D'Aprile; Rosella Scrima; Giovanni Quarato; Tiziana Tataranni; Franca Falzetti; Mauro Di Ianni; Marica Gemei; Luigi Del Vecchio; Claudia Piccoli; Nazzareno Capitanio

Oxidative metabolism and redox signaling prove to play a decisional role in controlling adult hematopoietic stem/progenitor cells (HSPCs) biology. However, HSPCs reside in a hypoxic bone marrow microenvironment raising the question of how oxygen metabolism might be ensued. In this study, we provide for the first time novel functional and molecular evidences that human HSPCs express myoglobin (Mb) at level comparable with that of a muscle‐derived cell line. Optical spectroscopy and oxymetry enabled to estimate an O2‐sensitive heme‐containing protein content of approximately 180 ng globin per 106 HSPC and a P50 of approximately 3 µM O2. Noticeably, expression of Mb mainly occurs through a HIF‐1‐induced alternative transcript (Mb‐V/Mb‐N = 35 ± 15, p < .01). A search for other Mb‐related globins unveiled significant expression of neuroglobin (Ngb) but not of cytoglobin. Confocal microscopy immune detection of Mb in HSPCs strikingly revealed nuclear localization in cell subsets expressing high level of CD34 (nuclear/cytoplasmic Mb ratios 1.40 ± 0.02 vs. 0.85 ± 0.05, p < .01) whereas Ngb was homogeneously distributed in all the HSPC population. Dual‐color fluorescence flow cytometry indicated that while the Mb content was homogeneously distributed in all the HSPC subsets that of Ngb was twofold higher in more immature HSPC. Moreover, we show that HSPCs exhibit a hypoxic nitrite reductase activity releasing NO consistent with described noncanonical functions of globins. Our finding extends the notion that Mb and Ngb can be expressed in nonmuscle and non‐neural contexts, respectively, and is suggestive of a differential role of Mb in HSPC in controlling oxidative metabolism at different stages of commitment. Stem Cells 2014;32:1267–1277


Journal of Biological Chemistry | 2005

Characterization of Mitochondrial and Extra-mitochondrial Oxygen Consuming Reactions in Human Hematopoietic Stem Cells NOVEL EVIDENCE OF THE OCCURRENCE OF NAD(P)H OXIDASE ACTIVITY

Claudia Piccoli; Roberto Ria; Rosella Scrima; Olga Cela; Annamaria D'Aprile; Domenico Boffoli; Franca Falzetti; Antonio Tabilio; Nazzareno Capitanio


Biochimica et Biophysica Acta | 2006

Mitochondrial dysfunction in hepatitis C virus infection.

Claudia Piccoli; Rosella Scrima; Annamaria D'Aprile; Maria Ripoli; Lucia Lecce; Domenico Boffoli; Nazzareno Capitanio

Collaboration


Dive into the Annamaria D'Aprile's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge