Annamária Schneider
Hungarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annamária Schneider.
Euphytica | 2008
Annamária Schneider; István Molnár; Márta Molnár-Láng
Wild Aegilops species related to cultivated wheat (Triticum spp.) possess numerous genes of agronomic interest and can be valuable sources of resistance to diseases, pests and extreme environmental factors. These genes can be incorporated into the wheat genome via intergeneric crossing, following, where necessary, the development of chromosome addition and substitution lines from the resulting hybrids. The transfer of a single segment from an alien chromosome can be achieved by translocations. The Aegilops (goatgrass) species, which are the most closely related to wheat, exhibit great genetic diversity, the exploitation of which has been the subject of experimentation for more than a century. The present paper gives a survey of the results achieved to date in the field of wheat–Aegilops hybridisation and gene transfer. The Aegilops genus consists of 11 diploid, 10 tetraploid and 2 hexaploid species. Of these 23 Aegilops species, most of the diploids (Ae. umbellulata Zhuk., Ae. mutica Boiss., Ae. bicornis (Forssk.) Jaub. & Spach, Ae. searsii Feldman & Kislev ex Hammer, Ae. caudata L., Ae. sharonensis Eig, Ae. speltoides Tausch, Ae. longissima Schweinf. & Muschl.) and several polyploids (Ae. ventricosa Tausch, Ae. peregrina (Hack. In J. Fraser) Marie & Weiller, Ae. geniculata Roth, Ae. kotschyi Boiss., Ae. biuncialis L.) have been used to develop wheat–Aegilops addition lines. Wheat–Aegilops substitution lines were developed using several species, including Ae. umbellulata, Ae. caudata, Ae. tauschii, Ae. speltoides, Ae. sharonensis, Ae. longissima and Ae. geniculata. Translocations carrying genes responsible for useful agronomic traits were developed with Ae. umbellulata, Ae. comosa, Ae. ventricosa, Ae. longissima, Ae. speltoides and Ae. geniculata. A large number of genes were transferred from Aegilops species to cultivated wheat, including those for resistance to leaf rust, stem rust, yellow rust and powdery mildew, and various pests (cereal cyst nematode, root knot nematode, Hessian fly, greenbug). Many molecular markers are linked to these resistance genes. The development of new molecular markers is also underway. There are still many untapped genetic resources in Aegilops species that could be used as resistance sources for plant breeding.
Annals of Botany | 2011
István Molnár; Marta Cifuentes; Annamária Schneider; Elena Benavente; Márta Molnár-Láng
BACKGROUND AND AIMS Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement. METHODS The chromosomal localization of (ACG)(n) and (GAA)(n) microsatellite sequences in Ae. biuncialis and Ae. geniculata and in their diploid progenitors Aegilops comosa and Aegilops umbellulata was investigated by sequential in situ hybridization with simple sequence repeat (SSR) probes and repeated DNA probes (pSc119·2, Afa family and pTa71) and by dual-colour genomic in situ hybridization (GISH). Thirty-two Ae. biuncialis and 19 Ae. geniculata accessions were screened by GISH for intergenomic translocations, which were further characterized by fluorescence in situ hybridization and GISH. KEY RESULTS Single pericentromeric (ACG)(n) signals were localized on most U and on some M genome chromosomes, whereas strong pericentromeric and several intercalary and telomeric (GAA)(n) sites were observed on the Aegilops chromosomes. Three Ae. biuncialis accessions carried 7U(b)-7M(b) reciprocal translocations and one had a 7U(b)-1M(b) rearrangement, while two Ae. geniculata accessions carried 7U(g)-1M(g) or 5U(g)-5M(g) translocations. Conspicuous (ACG)(n) and/or (GAA)(n) clusters were located near the translocation breakpoints in eight of the ten translocated chromosomes analysed, SSR bands and breakpoints being statistically located at the same chromosomal site in six of them. CONCLUSIONS Intergenomic translocation breakpoints are frequently mapped to SSR-rich chromosomal regions in the allopolyploid species examined, suggesting that microsatellite repeated DNA sequences might facilitate the formation of those chromosomal rearrangements. The (ACG)(n) and (GAA)(n) SSR motifs serve as additional chromosome markers for the karyotypic analysis of UM genome Aegilops species.
Cereal Research Communications | 2005
István Molnár; Annamária Schneider; Márta Molnár-Láng
The aims of the study were the optimisation of genomic in situ hybridization (GISH) and the use of a GAA satellite sequences as a fluorescence in situ hybridization (FISH) probe to discriminate Aegilops biuncialis and wheat chromosomes. The application of genomic DNA from the diploid progenitors, Ae. umbellulata and Ae. comosa , as a probe with a blocking ratio of 1:200 resulted in the clear visualization of Ae. biuncialis chromosomes. Based on the strong hybridization signals of the PCR-amplified GAA satellite sequences it was possible to identify chromosomes 1U, 2U, 4U and 5U of Ae. umbellulata . The improved GISH and GAA idiogram presented here allow the Ae. biuncialis chromatin to be traced in more detail during chromosome-mediated gene transfer to wheat.
Genome | 2005
Annamária Schneider; Gabriella Linc; István Molnár; Márta Molnár-Láng
Genome | 2006
E. Nagy; István Molnár; Annamária Schneider; G. Kovács; Márta Molnár-Láng
Euphytica | 2010
Annamária Schneider; István Molnár; Márta Molnár-Láng
Theoretical and Applied Genetics | 2016
Annamária Schneider; Marianna Rakszegi; Márta Molnár-Láng; Éva Szakács
Czech Journal of Genetics and Plant Breeding | 2018
Annamária Schneider; Márta Molnár-Láng
Archive | 2008
Annamária Schneider; István Molnár; Márta Molnár-Láng
Journal of Cereal Science | 2016
Éva Szakács; Annamária Schneider; Marianna Rakszegi; Márta Molnár-Láng