Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annapaola Franchitto is active.

Publication


Featured researches published by Annapaola Franchitto.


Journal of Cell Biology | 2002

Bloom's syndrome protein is required for correct relocalization of RAD50/MRE11/NBS1 complex after replication fork arrest

Annapaola Franchitto; Pietro Pichierri

Blooms syndrome (BS) is a rare genetic disorder characterized by a broad range of symptoms and, most importantly, a predisposition to many types of cancers. Cells derived from patients with BS exhibit an elevated rate of somatic recombination and hypermutability, supporting a role for bleomycin (BLM) in the maintenance of genomic integrity. BLM is thought to participate in several DNA transactions, the failure of which could give raise to genomic instability, and to interact with many proteins involved in replication, recombination, and repair. In this study, we show that BLM function is specifically required to properly relocalize the RAD50/MRE11/NBS1 (RMN) complex at sites of replication arrest, but is not essential in the activation of BRCA1 either after stalled replication forks or γ-rays. We also provide evidence that BLM is phosphorylated after replication arrest in an Ataxia and RAD3-related protein (ATR)-dependent manner and that phosphorylation is not required for subnuclear relocalization. Therefore, in ATR dominant negative mutant cells, the assembly of the RMN complex in nuclear foci after replication blockage is almost completely abolished. Together, these results suggest a relationship between BLM, ATR, and the RMN complex in the response to replication arrest, proposing a role for BLM protein and RMN complex in the resolution of stalled replication forks.


Oncogene | 2003

Werner's syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle.

Pietro Pichierri; Filippo Rosselli; Annapaola Franchitto

Werners syndrome (WS) is an autosomal recessive disorder, characterized at the cellular level by genomic instability in the form of variegated translocation mosaicism and extensive deletions. Individuals with WS prematurely develop multiple age-related pathologies and exhibit increased incidence of cancer. WRN, the gene defective in WS, encodes a 160-kDa protein (WRN), which has 3′–5′exonuclease, DNA helicase and DNA-dependent ATPase activities. WRN-defective cells are hypersensitive to certain genotoxic agents that cause replication arrest and/or double-strand breaks at the replication fork, suggesting a pivotal role for WRN in the protection of the integrity of the genoma during the DNA replication process. Here, we show that WRN is phosphorylated through an ATR/ATM dependent pathway in response to replication blockage. However, we provide evidence that WRN phosphorylation is not essential for its subnuclear relocalization after replication arrest. Finally, we show that WRN and ATR colocalize after replication fork arrest, suggesting that WRN and the ATR kinase collaborate to prevent genome instability during the S phase.


The EMBO Journal | 2010

ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery

Francesca Ammazzalorso; Livia Maria Pirzio; Margherita Bignami; Annapaola Franchitto; Pietro Pichierri

Accurate response to replication arrest is crucial to preserve genome stability and requires both the ATR and ATM functions. The Werner syndrome protein (WRN) is implicated in the recovery of stalled replication forks, and although an ATR/ATM‐dependent phosphorylation of WRN was observed after replication arrest, the function of such modifications during the response to perturbed replication is not yet appreciated. Here, we report that WRN is directly phosphorylated by ATR at multiple C‐terminal S/TQ residues. Suppression of ATR‐mediated phosphorylation of WRN prevents proper accumulation of WRN in nuclear foci, co‐localisation with RPA and causes breakage of stalled forks. On the other hand, inhibition of ATM kinase activity or expression of an ATM‐unphosphorylable WRN allele leads to retention of WRN in nuclear foci and impaired recruitment of RAD51 recombinase resulting in reduced viability after fork collapse. Altogether, our findings indicate that ATR and ATM promote recovery from perturbed replication by differently regulating WRN at defined moments of the response to replication fork arrest.


Journal of Cell Biology | 2008

Werner syndrome helicase activity is essential in maintaining fragile site stability

Livia Maria Pirzio; Pietro Pichierri; Margherita Bignami; Annapaola Franchitto

WRN is a member of the RecQ family of DNA helicases implicated in the resolution of DNA structures leading to the stall of replication forks. Fragile sites have been proposed to be DNA regions particularly sensitive to replicative stress. Here, we establish that WRN is a key regulator of fragile site stability. We demonstrate that in response to mild doses of aphidicolin, WRN is efficiently relocalized in nuclear foci in replicating cells and that WRN deficiency is associated with accumulation of gaps and breaks at common fragile sites even under unperturbed conditions. By expressing WRN isoforms impaired in either helicase or exonuclease activity in defective cells, we identified WRN helicase activity as the function required for maintaining the stability of fragile sites. Finally, we find that WRN stabilizes fragile sites acting in a common pathway with the ataxia telangiectasia and Rad3 related replication checkpoint. These findings provide the first evidence of a crucial role for a helicase in protecting cells against chromosome breakage at normally occurring replication fork stalling sites.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Terminally differentiated muscle cells are defective in base excision DNA repair and hypersensitive to oxygen injury.

Laura Narciso; Paola Fortini; Deborah Pajalunga; Annapaola Franchitto; Pingfang Liu; Paolo Degan; Mathilde Fréchet; Bruce Demple; Marco Crescenzi; Eugenia Dogliotti

The differentiation of skeletal myoblasts is characterized by permanent withdrawal from the cell cycle and fusion into multinucleated myotubes. Muscle cell survival is critically dependent on the ability of cells to respond to oxidative stress. Base excision repair (BER) is the main repair mechanism of oxidative DNA damage. In this study, we compared the levels of endogenous oxidative DNA damage and BER capacity of mouse proliferating myoblasts and their differentiated counterpart, the myotubes. Changes in the expression of oxidative stress marker genes during differentiation, together with an increase in 8-hydroxyguanine DNA levels in terminally differentiated cells, suggested that reactive oxygen species are produced during this process. The repair of 2-deoxyribonolactone, which is exclusively processed by long-patch BER, was impaired in cell extracts from myotubes. The repair of a natural abasic site (a preferred substrate for short-patch BER) also was delayed. The defect in BER of terminally differentiated muscle cells was ascribed to the nearly complete lack of DNA ligase I and to the strong down-regulation of XRCC1 with subsequent destabilization of DNA ligase IIIα. The attenuation of BER in myotubes was associated with significant accumulation of DNA damage as detected by increased DNA single-strand breaks and phosphorylated H2AX nuclear foci upon exposure to hydrogen peroxide. We propose that in skeletal muscle exacerbated by free radical injury, the accumulation of DNA repair intermediates, due to attenuated BER, might contribute to myofiber degeneration as seen in sarcopenia and many muscle disorders.


Journal of Cell Biology | 2008

Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway

Annapaola Franchitto; Livia Maria Pirzio; Ennio Prosperi; Orazio Sapora; Margherita Bignami; Pietro Pichierri

Failure to stabilize and properly process stalled replication forks results in chromosome instability, which is a hallmark of cancer cells and several human genetic conditions that are characterized by cancer predisposition. Loss of WRN, a RecQ-like enzyme mutated in the cancer-prone disease Werner syndrome (WS), leads to rapid accumulation of double-strand breaks (DSBs) and proliferating cell nuclear antigen removal from chromatin upon DNA replication arrest. Knockdown of the MUS81 endonuclease in WRN-deficient cells completely prevents the accumulation of DSBs after fork stalling. Also, MUS81 knockdown in WS cells results in reduced chromatin recruitment of recombination enzymes, decreased yield of sister chromatid exchanges, and reduced survival after replication arrest. Thus, we provide novel evidence that WRN is required to avoid accumulation of DSBs and fork collapse after replication perturbation, and that prompt MUS81-dependent generation of DSBs is instrumental for recovery from hydroxyurea-mediated replication arrest under such pathological conditions.


Oncogene | 2003

The mammalian mismatch repair protein MSH2 is required for correct MRE11 and RAD51 relocalization and for efficient cell cycle arrest induced by ionizing radiation in G2 phase

Annapaola Franchitto; Pietro Pichierri; Rita Piergentili; Marco Crescenzi; Margherita Bignami; Fabrizio Palitti

In yeast, MSH2 plays an important role in mismatch repair (MMR) and recombination, whereas the function of the mammalian MSH2 protein in recombinational repair is not completely established. We examined the cellular responses of MSH2-deficient mouse cells to X-rays to clarify the role of MSH2 in recombinational repair. Cell survival, checkpoint functions and relocalization of the recombination-related proteins MRE11 and RAD51 were analysed in embryonic fibroblasts derived from MSH2+/+ and MSH2−/− mice, and in MSH2-proficient and deficient mouse colorectal carcinoma cells. Loss of MSH2 function was found to be associated with reduction in cell survival following radiation, absence of either MRE11 or RAD51 relocalization and a higher level of X-ray-induced chromosomal damage specifically in G2-phase cells. Finally, MSH2−/− cells showed an inefficient early G2/M checkpoint, being arrested only transiently after irradiation before progressing into mitosis. Consistent with the premature release from the G2-phase arrest, activation of CHK1 was transient and CHK2 was not phosphorylated in synchronized MSH2-null cells. Our data suggest that an active MSH2 is required for a correct response to ionizing radiation-induced DNA damage in the G2 phase of the cell cycle, possibly connecting DSB repair to checkpoint signalling.


Mutation Research | 2000

Werner’s syndrome cell lines are hypersensitive to camptothecin-induced chromosomal damage

Pietro Pichierri; Annapaola Franchitto; P. Mosesso; Fabrizio Palitti

Werners syndrome (WS) is a recessive human genetic disorder associated with an elevated incidence of many types of cancer. The WS gene product, WRNp, belongs to the RecQ family of DNA helicases and is required for the maintenance of genomic stability in human cells. A possible interaction between helicases and topoisomerases that could co-operate in many aspects of DNA metabolism such as progression of the replication forks, recombination and repair has been recently suggested. In addition, sgs1 gene product in yeast, homologous to WS gene, has been shown to physically interact with topoisomerase types I and II. Earlier data from our laboratory suggested that WRN helicase might play a role in a G2 recombinational pathway of double strand breaks (DSBs) repair, co-operating with topoisomerase II. In this work, the effect of the topoisomerase I inhibitor camptothecin in WS cells has been investigated at the chromosomal level. The data from the present work suggest that the inhibition of topoisomerase I activity by camptothecin results in a higher induction of chromosomal damage in WS cell lines in the G2-phase and in the S-phase of the cell cycle compared to normal cells, perhaps associated with the defects in DNA replication synthesis.


Cancer Cell | 2010

Che-1 Promotes Tumor Cell Survival by Sustaining Mutant p53 Transcription and Inhibiting DNA Damage Response Activation

Tiziana Bruno; Agata Desantis; Gianluca Bossi; Silvia Di Agostino; Cristina Sorino; Francesca De Nicola; Simona Iezzi; Annapaola Franchitto; Barbara Benassi; Sergio Galanti; Francesca La Rosa; Aristide Floridi; Alfonso Bellacosa; Claudio Passananti; Giovanni Blandino; Maurizio Fanciulli

Che-1 is a RNA polymerase II binding protein involved in the regulation of gene transcription and, in response to DNA damage, promotes p53 transcription. In this study, we investigated whether Che-1 regulates mutant p53 expression. We found that Che-1 is required for sustaining mutant p53 expression in several cancer cell lines, and that Che-1 depletion by siRNA induces apoptosis both in vitro and in vivo. Notably, loss of Che-1 activates DNA damage checkpoint response and induces transactivation of p73. Therefore, these findings underline the important role that Che-1 has in survival of cells expressing mutant p53.


Oncogene | 2013

The WRN and MUS81 proteins limit cell death and genome instability following oncogene activation

I Murfuni; S Nicolai; S Baldari; Marco Crescenzi; Margherita Bignami; Annapaola Franchitto; Pietro Pichierri

Oncogene-induced replication stress is recognized as the primary cause of accumulation of DNA damage and genome instability in precancerous cells. Although the molecular mechanisms responding to such type of replication perturbation are not fully characterized, it has been speculated that their dysfunction may enhance genome instability and accelerate tumor progression. Here, we show that the WRN protein, a member of the human RecQ helicases, is necessary to sustain replication fork progression in response to oncogene-induced replication stress. Loss of WRN affects cell cycle progression and results in enhanced accumulation of double-strand breaks and instability at common fragile sites in cells experiencing oncogene-induced replication stress. Moreover, we demonstrate that double-strand breaks, observed upon oncogene over-expression, depend on the MUS81 endonuclease, which represents a parallel pathway collaborating with WRN to prevent cell death. Overall, our findings give insights into the mechanisms protecting replication forks in cells experiencing oncogene-induced replication stress, and identify factors that, when mutated or dysfunctional, may enhance genome instability in precancerous cells. In addition, because concomitant depletion of WRN and MUS81 causes synthetic sickness in cells growing under oncogene-induced replication stress, our results support the possibility of targeting cancer cells with an impaired replication fork recovery pathway by a specific inactivation of the other parallel pathway.

Collaboration


Dive into the Annapaola Franchitto's collaboration.

Top Co-Authors

Avatar

Pietro Pichierri

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Margherita Bignami

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Palitti

Nuclear Regulatory Commission

View shared research outputs
Top Co-Authors

Avatar

Marco Crescenzi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Deborah Pajalunga

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Eva Malacaria

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Leuzzi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Alessia Mazzola

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

E. Puggioni

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ivana Murfuni

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge