Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annarita Mariotti is active.

Publication


Featured researches published by Annarita Mariotti.


Journal of Climate | 2002

The Hydrological Cycle in the Mediterranean Region and Implications for the Water Budget of the Mediterranean Sea

Annarita Mariotti; Maria Vittoria Struglia; Ning Zeng; K.-M. Lau

Abstract The hydrological cycle in the Mediterranean region is analyzed focusing on climatology and interannual to interdecadal variability, in particular long-term changes related to the well-established North Atlantic Oscillation (NAO) teleconnection. Recent atmospheric reanalyses and observational datasets are used: precipitation, evaporation, and moisture flux from 50 yr of NCEPs and 15 yr of ECMWFs reanalyses; precipitation from the Climate Prediction Center Merged Analysis of Precipitation (CMAP) and the East Anglia University Climate Research Unit (CRU) datasets; and evaporation from the University of Wisconsin—Milwaukee (UWM) Comprehensive Ocean–Atmosphere Data Set (COADS). A budget analysis is performed to study contributions to the freshwater flux into the Mediterranean Sea, including atmospheric as well as river discharge inputs. The total river discharge is derived using historical time series from Mediterranean Hydrological Cycle Observing System (MED-HYCOS) and Global Runoff Data Center (G...


Environmental Research Letters | 2008

Causes and impacts of the 2005 Amazon drought

Ning Zeng; Jin-Ho Yoon; Jose A. Marengo; Ajit Subramaniam; Carlos A. Nobre; Annarita Mariotti; J. David Neelin

A rare drought in the Amazon culminated in 2005, leading to near record-low streamflows, small Amazon river plume, and greatly enhanced fire frequency. This episode was caused by the combination of 2002-03 El Nino and a dry spell in 2005 attributable to a warm subtropical North Atlantic Ocean. Analysis for 1979-2005 reveals that the Atlantic influence is comparable to the better-known Pacific linkage. While the Pacific influence is typically locked to the wet season, the 2005 Atlantic impact concentrated in the Amazon dry season when its hydroecosystem is most vulnerable. Such mechanisms may have wide-ranging implications for the future of the Amazon rainforest. S Supplementary data are available from stacks.iop.org/ERL/3/014002


Bulletin of the American Meteorological Society | 2014

HYMEX , a 10-year Multidisciplinary Program on the mediterranean water cycle.

Philippe Drobinski; Véronique Ducrocq; Pinhas Alpert; Emmanouil N. Anagnostou; Karine Béranger; Marco Borga; Isabelle Braud; Andre Chanzy; Silvio Davolio; Guy Delrieu; Claude Estournel; N. Filali-Boubrahmi; Jordi Font; Vanda Grubišić; Silvio Gualdi; V. Homar; B. Ivancan-Picek; C. Kottmeier; V. Krotoni; K. Lagouvardos; Piero Lionello; M. C. Llasat; Wolfgang Ludwig; Céline Lutoff; Annarita Mariotti; Evelyne Richard; R. Romero; Richard Rotunno; Odile Roussot; Isabelle Ruin

The Mediterranean countries are experiencing important challenges related to the water cycle, including water shortages and floods, extreme winds, and ice/snow storms, that impact critically the socioeconomic vitality in the area (causing damage to property, threatening lives, affecting the energy and transportation sectors, etc.). There are gaps in our understanding of the Mediterranean water cycle and its dynamics that include the variability of the Mediterranean Sea water budget and its feedback on the variability of the continental precipitation through air–sea interactions, the impact of precipitation variability on aquifer recharge, river discharge, and soil water content and vegetation characteristics specific to the Mediterranean basin and the mechanisms that control the location and intensity of heavy precipitating systems that often produce floods. The Hydrological Cycle in Mediterranean Experiment (HyMeX) program is a 10-yr concerted experimental effort at the international level that aims to advance the scientific knowledge of the water cycle variability in all compartments (land, sea, and atmosphere) and at various time and spatial scales. It also aims to improve the processes-based models needed for forecasting hydrometeorological extremes and the models of the regional climate system for predicting regional climate variability and evolution. Finally, it aims to assess the social and economic vulnerability to hydrometeorological natural hazards in the Mediterranean and the adaptation capacity of the territories and populations therein to provide support to policy makers to cope with water-related problems under the influence of climate change, by linking scientific outcomes with related policy requirements.


Bulletin of the American Meteorological Society | 2014

Causes and Predictability of the 2012 Great Plains Drought

Martin P. Hoerling; Jon Eischeid; Arun Kumar; R. Leung; Annarita Mariotti; Kingtse C. Mo; Siegfried D. Schubert; Richard Seager

Central Great Plains precipitation deficits during May–August 2012 were the most severe since at least 1895, eclipsing the Dust Bowl summers of 1934 and 1936. Drought developed suddenly in May, following near-normal precipitation during winter and early spring. Its proximate causes were a reduction in atmospheric moisture transport into the Great Plains from the Gulf of Mexico. Processes that generally provide air mass lift and condensation were mostly absent, including a lack of frontal cyclones in late spring followed by suppressed deep convection in the summer owing to large-scale subsidence and atmospheric stabilization. Seasonal forecasts did not predict the summer 2012 central Great Plains drought development, which therefore arrived without early warning. Climate simulations and empirical analysis suggest that ocean surface temperatures together with changes in greenhouse gases did not induce a substantial reduction in sum mertime precipitation over the central Great Plains during 2012. Yet, diagno...


Developments in Earth and Environmental Sciences | 2006

Chapter 1 Mediterranean climate variability over the last centuries: A review

Jürg Luterbacher; Elena Xoplaki; Carlo Casty; Heinz Wanner; Andreas Pauling; Marcel Küttel; This Rutishauser; Stefan Brönnimann; Erich M. Fischer; Dominik Fleitmann; Fidel González-Rouco; Ricardo García-Herrera; Mariano Barriendos; Fernando Rodrigo; Jose Carlos Gonzalez-Hidalgo; Miguel Angel Saz; Luis Gimeno; Pedro Ribera; Manolo Brunet; Heiko Paeth; Norel Rimbu; Thomas Felis; Jucundus Jacobeit; Armin Dünkeloh; Eduardo Zorita; Joël Guiot; Murat Türkeş; Maria João Alcoforado; Ricardo M. Trigo; Dennis A Wheeler

Publisher Summary This chapter discusses a necessary task for assessing to which degree the industrial period is unusual against the background of pre-industrial climate variability. It is the reconstruction and interpretation of temporal and spatial patterns of climate in earlier centuries. There are distinct differences in the temporal resolution among the various proxies. Some of the proxy records are annually or even higher resolved and hence record year-by-year patterns of climate in past centuries. Several of the temperature reconstructions reveal that the late twentieth century warmth is unprecedented at hemispheric scales and is explained by anthropogenic, greenhouse gas (GHG) forcing. The chapter discusses the availability and potential of long, homogenized instrumental data, documentary, and natural proxies to reconstruct aspects of past climate at local- to regional-scales within the larger Mediterranean area, which includes climate extremes and the incidence of natural disasters. The chapter describes the role of external forcing, including natural and anthropogenic influences, and natural, internal variability in the coupled ocean–atmosphere system at subcontinental scale.


Journal of Climate | 2013

North American Climate in CMIP5 Experiments. Part I: Evaluation of Historical Simulations of Continental and Regional Climatology*

Justin Sheffield; Andrew P. Barrett; Brian A. Colle; D. Nelun Fernando; Rong Fu; Kerrie L. Geil; Qi Hu; J. L. Kinter; Sanjiv Kumar; Baird Langenbrunner; Kelly Lombardo; Lindsey N. Long; Eric D. Maloney; Annarita Mariotti; Joyce E. Meyerson; Kingtse C. Mo; J. David Neelin; Sumant Nigam; Zaitao Pan; Tong Ren; Alfredo Ruiz-Barradas; Yolande L. Serra; Anji Seth; Jeanne M. Thibeault; Julienne Stroeve; Ze Yang; Lei Yin

AbstractThis is the first part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the historical simulations of continental and regional climatology with a focus on a core set of 17 models. The authors evaluate the models for a set of basic surface climate and hydrological variables and their extremes for the continent. This is supplemented by evaluations for selected regional climate processes relevant to North American climate, including cool season western Atlantic cyclones, the North American monsoon, the U.S. Great Plains low-level jet, and Arctic sea ice. In general, the multimodel ensemble mean represents the observed spatial patterns of basic climate and hydrological variables but with large variability across models and regions in the magnitude and sign of errors. No single model stands out as being particularly better or worse across all analyses, although some models consistently outperform the others for certain variab...


Journal of Climate | 2014

North American Climate in CMIP5 Experiments: Part III: Assessment of Twenty-First-Century Projections*

Eric D. Maloney; Suzana J. Camargo; Edmund K. M. Chang; Brian A. Colle; Rong Fu; Kerrie L. Geil; Qi Hu; Xianan Jiang; Nathaniel C. Johnson; Kristopher B. Karnauskas; James L. Kinter; Benjamin Kirtman; Sanjiv Kumar; Baird Langenbrunner; Kelly Lombardo; Lindsey N. Long; Annarita Mariotti; Joyce E. Meyerson; Kingtse C. Mo; J. David Neelin; Zaitao Pan; Richard Seager; Yolande L. Serra; Anji Seth; Justin Sheffield; Julienne Stroeve; Jeanne M. Thibeault; Shang-Ping Xie; Chunzai Wang; Bruce Wyman

AbstractIn part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, inc...


Journal of Climate | 2004

River Discharge into the Mediterranean Sea: Climatology and Aspects of the Observed Variability

Maria Vittoria Struglia; Annarita Mariotti; Angelo Filograsso

Abstract River discharge across the Mediterranean catchment basin is investigated by means of an extensive dataset of historical monthly time series to represent at-best discharge into the sea. Results give an annual mean river discharge into the Mediterranean of 8.1 × 103 m3 s−1, or at most a value that should not exceed 10.4 × 103 m3 s−1. The seasonal cycle has an amplitude of 5 × 103 m3 s−1, with a dry season in midsummer and a peak flow in early spring. Dominant contributions are from Europe with a climatological annual mean of 5.7 × 103 m3 s−1. Discharge in the Adriatic Sea, the Gulf of Lion, and the Aegean Sea together account for 62% of Mediterranean discharge, which mostly occurs in the Adriatic (2.7 × 103 m3 s−1). The North Atlantic Oscillation (NAO) impacts Mediterranean discharge primarily in winter, with most river discharges across the Mediterranean catchment being anticorrelated with the NAO. Related winter anomalies are about 10%–20% of the winter means. During the period 1960–90, Mediterra...


Developments in Earth and Environmental Sciences | 2006

Chapter 3 Relations between variability in the Mediterranean region and mid-latitude variability

Ricardo M. Trigo; Elena Xoplaki; Eduardo Zorita; Jürg Luterbacher; Simon O. Krichak; Pinhas Alpert; Jucundus Jacobeit; Jon Sáenz; Jesús Fernández; Fidel González-Rouco; Ricardo García-Herrera; Xavier Rodó; Michele Brunetti; Teresa Nanni; Maurizio Maugeri; Mura Türke; Luis Gimeno; Pedro Ribera; Manola Brunet; Isabel F. Trigo; Michel Crepon; Annarita Mariotti

Publisher Summary The Mediterranean climate is under the influence of both tropical and mid-latitude climate dynamics, being directly affected by continental and maritime air masses with significant origin differences. The peak of the winter season occurs between December and February, when the mid-latitude cyclone belt has usually reached its southernmost position. However, spring and autumn also contribute to a significant amount of precipitation. Being located at the southern limit of the North Atlantic storm tracks; the Mediterranean region is particularly sensitive to interannual shifts in the trajectories of mid-latitude cyclones that can lead to the remarkable anomalies of precipitation and, to a lesser extent, of temperature. Storm-track variability impacts primarily the western Mediterranean, but it hasa signature clearly detected in the eastern Mediterranean as well. The complex orography that characterizes most regions surrounding the Mediterranean basin can modulate and even distort climate anomaly patterns that otherwise would be geographically much more homogenous. Lack of water in winter and spring reflects in the crop yield. However, too much water in winter is harmful by drowning the seeds and retarding root development. The variability of precipitation plays a crucial role in the management of regional agriculture, in environment, in water resources and ecosystems, as well as social development and behavior.


Archive | 2013

Future Climate Projections

Silvio Gualdi; Samuel Somot; Wilhelm May; Sergio Castellari; Michel Déqué; Mario Adani; Vincenzo Artale; Alessio Bellucci; Joseph S. Breitgand; Adriana Carillo; Richard C. Cornes; Alessandro Dell’Aquila; Clotilde Dubois; Dimitrios Efthymiadis; Alberto Elizalde; Luis Gimeno; C. M. Goodess; Ali Harzallah; Simon O. Krichak; Franz G. Kuglitsch; Gregor C. Leckebusch; Blandine L’heveder; Laurent Li; Piero Lionello; Jürg Luterbacher; Annarita Mariotti; Antonio Navarra; Raquel Nieto; Katrin M. Nissen; Paolo Oddo

In this chapter we show results from an innovative multi-model system used to produce climate simulations with a realistic representation of the Mediterranean Sea. The models (hereafter simply referred to as the “CIRCE models”) are a set of five coupled climate models composed by a high-resolution Mediterranean Sea coupled with a relatively high-resolution atmospheric component and a global ocean, which allow, for the first time, to explore and assess the role of the Mediterranean Sea and its complex, small-scale dynamics in the climate of the region. In particular, they make it possible to investigate the influence that local air-sea feedbacks might exert on the mechanisms responsible for climate variability and change in the European continent, Middle East and Northern Africa. In many regards, they represent a new and innovative approach to the problem of regionalization of climate projections in the Mediterranean region.

Collaboration


Dive into the Annarita Mariotti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kingtse C. Mo

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ricardo García-Herrera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew W. Wood

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Arun Kumar

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge