Annchen R. Knodt
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annchen R. Knodt.
Neuron | 2015
Johnna R. Swartz; Annchen R. Knodt; Spenser R. Radtke; Ahmad R. Hariri
We all experience a host of common life stressors such as the death of a family member, medical illness, and financial uncertainty. While most of us are resilient to such stressors, continuing to function normally, for a subset of individuals, experiencing these stressors increases the likelihood of developing treatment-resistant, chronic psychological problems, including depression and anxiety. It is thus paramount to identify predictive markers of risk, particularly those reflecting fundamental biological processes that can be targets for intervention and prevention. Using data from a longitudinal study of 340 healthy young adults, we demonstrate that individual differences in threat-related amygdala reactivity predict psychological vulnerability to life stress occurring as much as 1 to 4 years later. These results highlight a readily assayed biomarker, threat-related amygdala reactivity, which predicts psychological vulnerability to commonly experienced stressors and represents a discrete target for intervention and prevention.
Molecular Psychiatry | 2016
Yuliya S. Nikolova; Annchen R. Knodt; Spenser R. Radtke; Ahmad R. Hariri
Prior work suggests that there may be two distinct pathways of alcohol use disorder (AUD) risk: one associated with positive emotion enhancement and behavioral impulsivity, and another associated with negative emotion relief and coping. We sought to map these two pathways onto individual differences in neural reward and threat processing assessed using blood-oxygen-level-dependent functional magnetic resonance imaging in a sample of 759 undergraduate students (426 women, mean age 19.65±1.24 years) participating in the Duke Neurogenetics Study. We demonstrate that problem drinking is highest in the context of stress and in those with one of two distinct neural phenotypes: (1) a combination of relatively low reward-related activity of the ventral striatum (VS) and high threat-related reactivity of the amygdala; or (2) a combination of relatively high VS activity and low amygdala reactivity. In addition, we demonstrate that the relationship between stress and problem alcohol use is mediated by impulsivity, as reflected in monetary delay discounting rates, for those with high VS–low amygdala reactivity, and by anxious/depressive symptomatology for those with the opposite neural risk phenotype. Across both neural phenotypes, we found that greater divergence between VS and amygdala reactivity predicted greater risk for problem drinking. Finally, for those individuals with the low VS–high amygdala risk phenotype we found that stress not only predicted the presence of AUD diagnosis at the time of neuroimaging but also subsequent problem drinking reported 3 months following study completion. These results offer new insight into the neural basis of AUD risk and suggest novel biological targets for early individualized treatment or prevention.
PLOS Biology | 2016
Philip A. Kragel; Annchen R. Knodt; Ahmad R. Hariri; Kevin S. LaBar
Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems.
Biological Psychiatry | 2017
Johnna R. Swartz; Rebecca Waller; Ryan Bogdan; Annchen R. Knodt; Aditi Sabhlok; Luke W. Hyde; Ahmad R. Hariri
BACKGROUND Williams syndrome (WS), a genetic disorder resulting from hemizygous microdeletion of chromosome 7q11.23, has emerged as a model for identifying the genetic architecture of socioemotional behavior. Common polymorphisms in GTF2I, which is found within the WS microdeletion, have been associated with reduced social anxiety in the general population. Identifying neural phenotypes affected by these polymorphisms would help advance our understanding not only of this specific genetic association but also of the broader neurogenetic mechanisms of variability in socioemotional behavior. METHODS Through an ongoing parent protocol, the Duke Neurogenetics Study, we measured threat-related amygdala reactivity to fearful and angry facial expressions using functional magnetic resonance imaging, assessed trait personality using the Revised NEO Personality Inventory, and imputed GTF2I rs13227433 from saliva-derived DNA using custom Illumina arrays. Participants included 808 non-Hispanic Caucasian, African American, and Asian university students. RESULTS The GTF2I rs13227433 AA genotype, previously associated with lower social anxiety, predicted decreased threat-related amygdala reactivity. An indirect effect of GTF2I genotype on the warmth facet of extraversion was mediated by decreased threat-related amygdala reactivity in women but not men. CONCLUSIONS A common polymorphism in the WS gene GTF2I associated with reduced social anxiety predicts decreased threat-related amygdala reactivity, which mediates an association between genotype and increased warmth in women. These results are consistent with reduced threat-related amygdala reactivity in WS and suggest that common variation in GTF2I contributes to broader variability in socioemotional brain function and behavior, with implications for understanding the neurogenetic bases of WS as well as social anxiety.
Social Cognitive and Affective Neuroscience | 2016
Rebecca Waller; Nadia S. Corral-Frías; Bianca Vannucci; Ryan Bogdan; Annchen R. Knodt; Ahmad R. Hariri; Luke W. Hyde
Variability in oxytocin (OXT) signaling is associated with individual differences in sex-specific social behavior across species. The effects of OXT signaling on social behavior are, in part, mediated through its modulation of amygdala function. Here, we use imaging genetics to examine sex-specific effects of three single-nucleotide polymorphisms in the human oxytocin receptor gene (OXTR; rs1042778, rs53576 and rs2254298) on threat-related amygdala reactivity and social behavior in 406 Caucasians. Analyses revealed that among men but not women, OXTR rs1042778 TT genotype was associated with increased right amygdala reactivity to angry facial expressions, which was uniquely related to higher levels of antisocial behavior among men. Moderated meditation analysis suggested a trending indirect effect of OXTR rs1042778 TT genotype on higher antisocial behavior via increased right amygdala reactivity to angry facial expressions in men. Our results provide evidence linking genetic variation in OXT signaling to individual differences in amygdala function. The results further suggest that these pathways may be uniquely important in shaping antisocial behavior in men.
Clinical psychological science | 2017
Matthew A. Scult; Annchen R. Knodt; Johnna R. Swartz; Bartholomew D. Brigidi; Ahmad R. Hariri
Calculating math problems from memory may seem unrelated to everyday processing of emotions, but they have more in common than one might think. Prior research highlights the importance of the dorsolateral prefrontal cortex (dlPFC) in executive control, intentional emotion regulation, and experience of dysfunctional mood and anxiety. Although it has been hypothesized that emotion regulation may be related to “cold” (i.e., not emotion-related) executive control, this assertion has not been tested. We address this gap by providing evidence that greater dlPFC activity during cold executive control is associated with increased use of cognitive reappraisal to regulate emotions in everyday life. We then demonstrate that in the presence of increased life stress, increased dlPFC activity is associated with lower mood and anxiety symptoms and clinical diagnoses. Collectively, our results encourage ongoing efforts to understand prefrontal executive control as a possible intervention target for improving emotion regulation in mood and anxiety disorders.
Social Cognitive and Affective Neuroscience | 2015
Adam Gorka; Annchen R. Knodt; Ahmad R. Hariri
Animal studies reveal that the amygdala promotes attention and emotional memory, in part, by driving activity in downstream target regions including the prefrontal cortex (PFC) and hippocampus. Prior work has demonstrated that the amygdala influences these regions directly through monosynaptic glutamatergic signaling, and indirectly by driving activity of the cholinergic basal forebrain and subsequent downstream acetylcholine release. Yet to date, no work has addressed the functional relevance of the cholinergic basal forebrain in facilitating signaling from the amygdala in humans. We set out to determine how blood oxygen level-dependent signal within the amygdala and cholinergic basal forebrain interact to predict neural responses within downstream targets. Here, we use functional connectivity analyses to demonstrate that the cholinergic basal forebrain moderates increased amygdala connectivity with both the PFC and the hippocampus during the processing of biologically salient stimuli in humans. We further demonstrate that functional variation within the choline transporter gene predicts the magnitude of this modulatory effect. Collectively, our results provide novel evidence for the importance of cholinergic signaling in modulating neural pathways supporting arousal, attention and memory in humans. Further, our results may shed light on prior association studies linking functional variation within the choline transporter gene and diagnoses of major depression and attention-deficit hyperactivity disorder.
NeuroImage | 2012
Benjamin B. Lahey; Kristin McNealy; Annchen R. Knodt; David H. Zald; Olaf Sporns; Stephen B. Manuck; Janine D. Flory; Brooks Applegate; Paul J. Rathouz; Ahmad R. Hariri
Functional neuroimaging often generates large amounts of data on regions of interest. Such data can be addressed effectively with a widely-used statistical technique based on measurement theory that has not yet been applied to neuroimaging. Confirmatory factor analysis is a convenient hypothesis-driven modeling environment that can be used to conduct formal statistical tests comparing alternative hypotheses regarding the elements of putative neuronal networks. In such models, measures of each activated region of interest are treated as indicators of an underlying latent construct that represents the contemporaneous activation of the elements in the network. As such, confirmatory factor analysis focuses analyses on the activation of hypothesized networks as a whole, improves statistical power by modeling measurement error, and provides a theory-based approach to data reduction with a robust statistical basis. This approach is illustrated using data on seven regions of interest in a hypothesized mesocorticostriatal reward system in a sample of 262 adult volunteers assessed during a card-guessing reward task. A latent construct reflecting contemporaneous activation of the reward system was found to be significantly associated with a latent construct measuring impulsivity, particularly in males.
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging | 2017
Caitlin E. Carey; Annchen R. Knodt; Emily Drabant Conley; Ahmad R. Hariri; Ryan Bogdan
BACKGROUND Problematic alcohol use in adolescence and adulthood is a common and often debilitating correlate of childhood attention-deficit/hyperactivity disorder (ADHD). Converging evidence suggests that ADHD and problematic alcohol use share a common additive genetic basis, which may be mechanistically related to reward-related brain function. In the current study, we examined whether polygenic risk for childhood ADHD is linked to problematic alcohol use in young adulthood through alterations in reward-related activity of the ventral striatum, a neural hub supporting appetitive behaviors and reinforcement learning. METHODS Genomic, neuroimaging, and self-report data were available for 404 non-Hispanic European-American participants who completed the ongoing Duke Neurogenetics Study. Polygenic risk scores for childhood ADHD were calculated based on a genome-wide association study meta-analysis conducted by the Psychiatric Genomics Consortium and tested for association with reward-related ventral striatum activity, measured using a number-guessing functional magnetic resonance imaging paradigm, and self-reported problematic alcohol use. A mediational model tested whether ventral striatum activity indirectly links polygenic risk for ADHD to problematic alcohol use. RESULTS Despite having no main effect on problematic alcohol use, polygenic risk for childhood ADHD was indirectly associated with problematic alcohol use through increased reward-related ventral striatum activity. CONCLUSIONS Individual differences in reward-related brain function may, at least in part, mechanistically link polygenic risk for childhood ADHD to problematic alcohol use.
Molecular Psychiatry | 2018
Adrienne L. Romer; Annchen R. Knodt; Renate Houts; Bartholomew D. Brigidi; Terrie E. Moffitt; Avshalom Caspi; Ahmad R. Hariri
Accumulating mental-health research encourages a shift in focus toward transdiagnostic dimensional features that are shared across categorical disorders. In support of this shift, recent studies have identified a general liability factor for psychopathology—sometimes called the ‘p factor’— that underlies shared risk for a wide range of mental disorders. Identifying neural correlates of this general liability would substantiate its importance in characterizing the shared origins of mental disorders and help us begin to understand the mechanisms through which the ‘p factor’ contributes to risk. Here we believe we first replicate the ‘p factor’ using cross-sectional data from a volunteer sample of 1246 university students, and then using high-resolution multimodal structural neuroimaging, we demonstrate that individuals with higher ‘p factor’ scores show reduced structural integrity of white matter pathways, as indexed by lower fractional anisotropy values, uniquely within the pons. Whole-brain analyses further revealed that higher ‘p factor’ scores are associated with reduced gray matter volume in the occipital lobe and left cerebellar lobule VIIb, which is functionally connected with prefrontal regions supporting cognitive control. Consistent with the preponderance of cerebellar afferents within the pons, we observed a significant positive correlation between the white matter integrity of the pons and cerebellar gray matter volume associated with higher ‘p factor’ scores. The results of our analyses provide initial evidence that structural alterations in corticocerebellar circuitry supporting core functions related to the basic integration, coordination and monitoring of information may contribute to a general liability for common mental disorders.