Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Amandine Chassot is active.

Publication


Featured researches published by Anne-Amandine Chassot.


Journal of Biological Chemistry | 2007

Transcriptional Signature of Epidermal Keratinocytes Subjected to in Vitro Scratch Wounding Reveals Selective Roles for ERK1/2, p38, and Phosphatidylinositol 3-Kinase Signaling Pathways

Giorgos Fitsialos; Anne-Amandine Chassot; Laurent Turchi; Manal A. Dayem; Kevin Lebrigand; Chimène Moreilhon; Guerrino Meneguzzi; Roser Buscà; Bernard Mari; Pascal Barbry; Gilles Ponzio

Covering denuded dermal surfaces after injury requires migration, proliferation, and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38MAPK and phosphatidylinositol 3-kinase (PI3K), demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. p38MAPK inhibition only delays “healing,” probably in line with the control of genes involved in the propagation of injury-initiated signaling. In contrast, PI3K inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF, and ETS1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38MAPK and negative ones triggered by PI3K. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids.


Journal of Biological Chemistry | 2007

Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding, reveals selective roles for ERK1/2, P38 and PI3K signalling pathways

Giorgos Fitsialos; Anne-Amandine Chassot; Laurent Turchi; Manal A. Dayem; Kevin Lebrigand; Chimène Moreilhon; Guerrino Meneguzzi; Roser Buscà; Bernard Mari; Pascal Barbry; Gilles Ponzio

Covering denuded dermal surfaces after injury requires migration, proliferation, and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38MAPK and phosphatidylinositol 3-kinase (PI3K), demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. p38MAPK inhibition only delays “healing,” probably in line with the control of genes involved in the propagation of injury-initiated signaling. In contrast, PI3K inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF, and ETS1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38MAPK and negative ones triggered by PI3K. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids.


Sexual Development | 2008

Genetics of Ovarian Differentiation: Rspo1 , a Major Player

Anne-Amandine Chassot; Elodie P. Gregoire; M. Magliano; Rowena Lavery; Marie-Christine Chaboissier

In mammals, the sex of the embryo is determined during development by its commitment either to the male or female genetic program regulating testicular or ovarian organogenesis. Major steps towards unraveling sex determination in mammals are achieved by the identification of key genes involved in human pathologies and the application of mouse genetics to analyze their function. While the expression of Sry and Sox9 is sufficient to induce the male devel- opmental program, the molecular pathways that specify ovarian differentiation were unclear before the recent demonstration that mutations in the RSPO1 gene induce female-to-male sex reversal in XX patients. By generating the corresponding mouse model, we have shown that Rspo1 is so far the earliest known gene controlling the female genetic developmental program. Rspo1 activates the canonical β-catenin signaling pathway required for female somatic cell differentiation and germ cell commitment into meiosis. The aim of this review is to describe the roles of R-spondins (Rspo)in developmental processes and disorders and the current knowledge obtained from murine models. A particular focus will be on Rspo1 and its crucial function in sex determination.


Development | 2012

WNT4 and RSPO1 together are required for cell proliferation in the early mouse gonad

Anne-Amandine Chassot; Stephen T. Bradford; Aurélie Auguste; Elodie P. Gregoire; Eric Pailhoux; Dirk G. de Rooij; Andreas Schedl; Marie-Christine Chaboissier

The gonad arises from the thickening of the coelomic epithelium and then commits into the sex determination process. Testis differentiation is activated by the expression of the Y-linked gene Sry, which promotes cell proliferation and differentiation of Sertoli cells, the supporting cells of the testis. In absence of Sry (XX individuals), activation of WNT/CTNNB1 signalling, via the upregulation of Rspo1 and Wnt4, promotes ovarian differentiation. However, Rspo1 and Wnt4 are expressed in the early undifferentiated gonad of both sexes, and Axin2-lacZ, a reporter of canonical WNT/CTNNB1 signalling, is expressed in the coelomic region of the E11.5 gonadal primordium, suggesting a role of these factors in early gonadal development. Here, we show that simultaneous ablation of Rspo1 and Wnt4 impairs proliferation of the cells of the coelomic epithelium, reducing the number of progenitors of Sertoli cells in XY mutant gonads. As a consequence, in XY Wnt4−/−; Rspo1−/− foetuses, this leads to the differentiation of a reduced number of Sertoli cells and the formation of a hypoplastic testis exhibiting few seminiferous tubules. Hence, this study identifies Rspo1 and Wnt4 as two new regulators of cell proliferation in the early gonad regardless of its sex, in addition to the specific role of these genes in ovarian differentiation.


Developmental Biology | 2014

Marker genes identify three somatic cell types in the fetal mouse ovary

Raphael H. Rastetter; Pascal Bernard; James S. Palmer; Anne-Amandine Chassot; Huijun Chen; Patrick S. Western; Robert G. Ramsay; Marie-Christine Chaboissier; Dagmar Wilhelm

The two main functions of the ovary are the production of oocytes, which allows the continuation of the species, and secretion of female sex hormones, which control many aspects of female development and physiology. Normal development of the ovaries during embryogenesis is critical for their function and the health of the individual in later life. Although the adult ovary has been investigated in great detail, we are only starting to understand the cellular and molecular biology of early ovarian development. Here we show that the adult stem cell marker Lgr5 is expressed in the cortical region of the fetal ovary and this expression is mutually exclusive to FOXL2. Strikingly, a third somatic cell population can be identified, marked by the expression of NR2F2, which is expressed in LGR5- and FOXL2 double-negative ovarian somatic cells. Together, these three marker genes label distinct ovarian somatic cell types. Using lineage tracing in mice, we show that Lgr5-positive cells give rise to adult cortical granulosa cells, which form the follicles of the definitive reserve. Moreover, LGR5 is required for correct timing of germ cell differentiation as evidenced by a delay of entry into meiosis in Lgr5 loss-of-function mutants, demonstrating a key role for LGR5 in the differentiation of pre-granulosa cells, which ensure the differentiation of oogonia, the formation of the definitive follicle reserve, and long-term female fertility.


Reproduction | 2014

R-spondin1, WNT4, and the CTNNB1 signaling pathway: strict control over ovarian differentiation

Anne-Amandine Chassot; Isabelle Gillot; Marie-Christine Chaboissier

Sex differentiation is a unique developmental process. Starting from a bipotential gonad, it gives rise to the ovary and the testis, two highly specialized organs that differ morphologically and physiologically despite sharing common reproductive and endocrine functions. This highlights the specific plasticity of the gonadal precursors and the existence of complex antagonistic genetic regulation. Mammalian sex determination is controlled by paternal transmission of the Y-linked gene, sex-determining region Y (SRY). Using mouse models, it has been shown that the main role of Sry is to activate the expression of the transcription factor Sox9; either one of these two genes is necessary and sufficient to allow testicular development through Sertoli cell differentiation. Thus, defects in SRY/Sry and/or SOX9/Sox9 expression result in male-to-female sex reversal of XY individuals. Molecular mechanisms governing ovarian differentiation remained unknown for a long time, until the discovery of the roles of R-spondin1 (RSPO1) and WNT4. In XX individuals, activation of the β-catenin signaling pathway by the secreted proteins RSPO1 and WNT4 is required to allow granulosa cell differentiation and, in turn, ovarian differentiation. Thus, mutations in RSPO1 result in female-to-male sex reversal of XX patients, and mouse models have allowed the identification of genetic cascades activated by RSPO1 and WNT4 to regulate ovarian development. In this review, we will discuss the respective roles of RSPO1, WNT4, and the β-catenin signaling pathway during ovarian differentiation in mice.


PLOS Genetics | 2012

Testicular Differentiation Occurs in Absence of R-spondin1 and Sox9 in Mouse Sex Reversals

Rowena Lavery; Anne-Amandine Chassot; Eva Pauper; Elodie P. Gregoire; Muriel Klopfenstein; Dirk G. de Rooij; Manuel Mark; Andreas Schedl; Norbert B. Ghyselinck; Marie-Christine Chaboissier

In mammals, male sex determination is governed by SRY-dependent activation of Sox9, whereas female development involves R-spondin1 (RSPO1), an activator of the WNT/beta-catenin signaling pathway. Genetic analyses in mice have demonstrated Sry and Sox9 to be both required and sufficient to induce testicular development. These genes are therefore considered as master regulators of the male pathway. Indeed, female-to-male sex reversal in XX Rspo1 mutant mice correlates with Sox9 expression, suggesting that this transcription factor induces testicular differentiation in pathological conditions. Unexpectedly, here we show that testicular differentiation can occur in XX mutants lacking both Rspo1 and Sox9 (referred to as XX Rspo1KOSox9cKO ), indicating that Sry and Sox9 are dispensable to induce female-to-male sex reversal. Molecular analyses show expression of both Sox8 and Sox10, suggesting that activation of Sox genes other than Sox9 can induce male differentiation in Rspo1KOSox9cKO mice. Moreover, since testis development occurs in XY Rspo1KOSox9cKO mice, our data show that Rspo1 is the main effector for male-to-female sex reversal in XY Sox9cKO mice. Thus, Rspo1 is an essential activator of ovarian development not only in normal situations, but also in sex reversal situations. Taken together these data demonstrate that both male and female sex differentiation is induced by distinct, active, genetic pathways. The dogma that considers female differentiation as a default pathway therefore needs to be definitively revised.


Cell Cycle | 2008

Confluence-induced cell cycle exit involves pre-mitotic CDK inhibition by p27Kip1 and cyclin D1 downregulation

Anne-Amandine Chassot; Gerald Lossaint; Laurent Turchi; Guerrino Meneguzzi; Daniel Fisher; Gilles Ponzio; Vjekoslav Dulic

Tissue homeostasis requires precise control of cell proliferation and arrest in response to environmental cues. In situation such as wound healing, injured cells are stimulated to divide, but as soon as confluence is reached proliferation must be blocked. Such reversible cell cycle exit occurs in G1, requires pRb family members, and is driven by p27Kip1-dependent Cdk inactivation. This implies that, while dividing, cells should simultaneously prepare the exit once mitosis is accomplished. For a long time, the decision to cycle or not was presumed to occur in G1, prior to the restriction point, beyond which the cells were bound to divide even in the absence of mitogens, before finally arresting after mitosis. However, more recent reports suggested that the commitment to cycle in response to serum occurs already in G2 phase and requires the Ras-dependent induction of cyclin D1, which promotes following G1/S transition. To test whether this hypothesis applies to arrest induced by contact inhibition, we used an in vitro wounding model where quiescent human dermal fibroblasts, stimulated to proliferate by mechanical injury, synchronously exit cell cycle after mitosis due to renewed confluence. We show that this exit is preceded by p27-dependent inhibition of cyclin A-Cdk1/2, cyclin D1 downregulation and reduced pre-mitotic pRb pocket protein phosphorylation. Over-expression of cyclin D1 but not p27 depletion reversed this phenotype and compromised confluence-driven cell cycle exit. Thus, a balance between cyclin D1 and p27 may provide sensitive responses to variations in proliferative cues operating throughout the cell cycle.


Transgenic Research | 2009

Goat RSPO1 over-expression rescues sex-reversal in Rspo1-knockout XX mice but does not perturb testis differentiation in XY or sex-reversed XX mice

Laurine Buscara; Fatemeh Montazer-Torbati; Sead Chadi; Aurélie Auguste; Johann Laubier; Anne-Amandine Chassot; Lauriane Renault; Bruno Passet; José Costa; Maëlle Pannetier; Marthe Vilotte; Marie-Christine Chaboissier; Jean-Luc Vilotte; Eric Pailhoux; Fabienne Le Provost

RSPO1 is a newly discovered gene involved in sex differentiation. Two goat BAC clones encompassing the RSPO1 gene (gRSPO1) were injected into mouse oocytes and several transgenic lines derived. Both clones induced gRSPO1 over-expression in various tissues, including male and female gonads, with no obvious phenotype and normal sex-ratios. Introgression of the gRSPO1 transgene into a mouse RSPO1 knockout genotype resulted in the rescue of the fertility and the disappearance of the masculinized gonadic features of the females, demonstrating the functionality of the goat protein in a mouse context. On the contrary, over-expression of gRSPO1 within a mSRY or a gSRY-XX genotypes did not interfere with the SRY-induced male phenotype.


Cell Reports | 2017

R-spondin1 Controls Muscle Cell Fusion through Dual Regulation of Antagonistic Wnt Signaling Pathways

Floriane Lacour; Elsa Vezin; C. Florian Bentzinger; Marie-Claude Sincennes; Lorenzo Giordani; Arnaud Ferry; Robert Mitchell; Ketan Patel; Michael A. Rudnicki; Marie-Christine Chaboissier; Anne-Amandine Chassot; Fabien Le Grand

Summary Wnt-mediated signals are involved in many important steps in mammalian regeneration. In multiple cell types, the R-spondin (Rspo) family of secreted proteins potently activates the canonical Wnt/β-catenin pathway. Here, we identify Rspo1 as a mediator of skeletal muscle tissue repair. First, we show that deletion of Rspo1 results in global alteration of muscle regeneration kinetics following acute injury. We find that muscle progenitor cells lacking Rspo1 show delayed differentiation due to reduced activation of Wnt/β-catenin target genes. Furthermore, muscle cells lacking Rspo1 have a fusion phenotype leading to larger myotubes containing supernumerary nuclei both in vitro and in vivo. The increase in muscle fusion was dependent on downregulation of Wnt/β-catenin and upregulation of non-canonical Wnt7a/Fzd7/Rac1 signaling. We conclude that reciprocal control of antagonistic Wnt signaling pathways by Rspo1 in muscle stem cell progeny is a key step ensuring normal tissue architecture restoration following acute damage.

Collaboration


Dive into the Anne-Amandine Chassot's collaboration.

Top Co-Authors

Avatar

Eric Pailhoux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Gilles Ponzio

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurélie Auguste

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bruno Passet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Johann Laubier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Maëlle Pannetier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Rowena Lavery

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Sead Chadi

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bernard Mari

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge