Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne B. Mason is active.

Publication


Featured researches published by Anne B. Mason.


Journal of Biological Chemistry | 2006

The Crystal Structure of Iron-free Human Serum Transferrin Provides Insight into Inter-lobe Communication and Receptor Binding

Jeremy Wally; Peter J. Halbrooks; Clemens Vonrhein; Mark A. Rould; Stephen J. Everse; Anne B. Mason; Susan K. Buchanan

Serum transferrin reversibly binds iron in each of two lobes and delivers it to cells by a receptor-mediated, pH-dependent process. The binding and release of iron result in a large conformational change in which two subdomains in each lobe close or open with a rigid twisting motion around a hinge. We report the structure of human serum transferrin (hTF) lacking iron (apo-hTF), which was independently determined by two methods: 1) the crystal structure of recombinant non-glycosylated apo-hTF was solved at 2.7-Å resolution using a multiple wavelength anomalous dispersion phasing strategy, by substituting the nine methionines in hTF with selenomethionine and 2) the structure of glycosylated apo-hTF (isolated from serum) was determined to a resolution of 2.7Å by molecular replacement using the human apo-N-lobe and the rabbit holo-C1-subdomain as search models. These two crystal structures are essentially identical. They represent the first published model for full-length human transferrin and reveal that, in contrast to family members (human lactoferrin and hen ovotransferrin), both lobes are almost equally open: 59.4° and 49.5° rotations are required to open the N- and C-lobes, respectively (compared with closed pig TF). Availability of this structure is critical to a complete understanding of the metal binding properties of each lobe of hTF; the apo-hTF structure suggests that differences in the hinge regions of the N- and C-lobes may influence the rates of iron binding and release. In addition, we evaluate potential interactions between apo-hTF and the human transferrin receptor.


Nature | 2012

Structural basis for iron piracy by pathogenic Neisseria

Nicholas Noinaj; Nicole C. Easley; Muse Oke; Naoko Mizuno; James C. Gumbart; Evzen Boura; Ashley N. Steere; Olga Zak; Philip Aisen; Emad Tajkhorshid; Robert W. Evans; Andrew Gorringe; Anne B. Mason; Alasdair C. Steven; Susan K. Buchanan

Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA–transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB–transferrin complex by small-angle X-ray scattering and the TbpA–TbpB–transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.


Proceedings of the National Academy of Sciences of the United States of America | 2011

How the binding of human transferrin primes the transferrin receptor potentiating iron release at endosomal pH

Brian E. Eckenroth; Ashley N. Steere; N. Dennis Chasteen; Stephen J. Everse; Anne B. Mason

Delivery of iron to cells requires binding of two iron-containing human transferrin (hTF) molecules to the specific homodimeric transferrin receptor (TFR) on the cell surface. Through receptor-mediated endocytosis involving lower pH, salt, and an unidentified chelator, iron is rapidly released from hTF within the endosome. The crystal structure of a monoferric N-lobe hTF/TFR complex (3.22-Å resolution) features two binding motifs in the N lobe and one in the C lobe of hTF. Binding of FeNhTF induces global and site-specific conformational changes within the TFR ectodomain. Specifically, movements at the TFR dimer interface appear to prime the TFR to undergo pH-induced movements that alter the hTF/TFR interaction. Iron release from each lobe then occurs by distinctly different mechanisms: Binding of His349 to the TFR (strengthened by protonation at low pH) controls iron release from the C lobe, whereas displacement of one N-lobe binding motif, in concert with the action of the dilysine trigger, elicits iron release from the N lobe. One binding motif in each lobe remains attached to the same α-helix in the TFR throughout the endocytic cycle. Collectively, the structure elucidates how the TFR accelerates iron release from the C lobe, slows it from the N lobe, and stabilizes binding of apohTF for return to the cell surface. Importantly, this structure provides new targets for mutagenesis studies to further understand and define this system.


Journal of Biological Inorganic Chemistry | 1999

Identification of platination sites on human serum transferrin using (13)C and (15)N NMR spectroscopy.

Mark C. Cox; Kevin J. Barnham; Tom A. Frenkiel; James D. Hoeschele; Anne B. Mason; Qing-Yu He; Robert C. Woodworth; Peter J. Sadler

Abstract Reactions between various apo and metal-bound forms of human serum transferrin (80 kDa) and the recombinant N-lobe (40 kDa) with [Pt(en)Cl2] or cis-[PtCl2(NH3)2] have been investigated in solution via observation of [1H,15N] NMR resonances of the Pt complexes, [1H,13C] resonances of the eCH3 groups of the protein methionine residues, and by chromatographic analysis of single-site methionine mutants. For the whole protein, the preferred Pt binding site appears to be Met256. Additional binding occurs at the other surface-exposed methionine (Met499), which is platinated at a slower rate than Met256. In contrast, binding of similar Pt compounds to the N-lobe of the protein occurs at Met313, rather than Met256. Met313 is buried in the interlobe contact region of intact transferrin. After loss of one chloride ligand from Pt and binding to methionine sulfur of the N-lobe, chelate-ring closure appears to occur with binding to a deprotonated backbone amide nitrogen, and the loss of the other chloride ligand. Such chelate-ring closure was not observed during reactions of the whole protein, even after several days.


Biochimica et Biophysica Acta | 2012

Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH

Ashley N. Steere; Shaina L. Byrne; N. Dennis Chasteen; Anne B. Mason

BACKGROUND Human serum transferrin (hTF) is a bilobal glycoprotein that reversibly binds Fe(3+) and delivers it to cells by the process of receptor-mediated endocytosis. Despite decades of research, the precise events resulting in iron release from each lobe of hTF within the endosome have not been fully delineated. SCOPE OF REVIEW We provide an overview of the kinetics of iron release from hTF±the transferrin receptor (TFR) at endosomal pH (5.6). A critical evaluation of the array of biophysical techniques used to determine accurate rate constants is provided. GENERAL SIGNIFICANCE Delivery of Fe(3+)to actively dividing cells by hTF is essential; too much or too little Fe(3+) directly impacts the well-being of an individual. Because the interaction of hTF with the TFR controls iron distribution in the body, an understanding of this process at the molecular level is essential. MAJOR CONCLUSIONS Not only does TFR direct the delivery of iron to the cell through the binding of hTF, kinetic data demonstrate that it also modulates iron release from the N- and C-lobes of hTF. Specifically, the TFR balances the rate of iron release from each lobe, resulting in efficient Fe(3+) release within a physiologically relevant time frame. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.


Journal of Controlled Release | 2009

Genetically engineering transferrin to improve its in vitro ability to deliver cytotoxins

Dennis J. Yoon; David S.H. Chu; Christopher W. Ng; Edward A. Pham; Anne B. Mason; David M. Hudson; Valerie C. Smith; Ross T. A. MacGillivray; Daniel T. Kamei

We previously demonstrated that decreasing the iron release rate of transferrin (Tf), by replacing the synergistic anion carbonate with oxalate, increases its in vitro drug carrier efficacy in HeLa cells. In the current work, the utility of this strategy has been further explored by generating two Tf mutants, K206E/R632A Tf and K206E/K534A Tf, exhibiting different degrees of iron release inhibition. The intracellular trafficking behavior of these Tf mutants has been assessed by measuring their association with HeLa cells. Compared to native Tf, the cellular association of K206E/R632A Tf and K206E/K534A Tf increased by 126 and 250%, respectively. Surface plasmon resonance studies clearly indicate that this increase in cellular association is due to a decrease in the iron release rate and not to differences in binding affinity of the mutants to the Tf receptor (TfR). Diphtheria toxin (DT) conjugates of K206E/R632A Tf and K206E/K534A Tf showed significantly increased cytotoxicity against HeLa cells with IC(50) values of 1.00 pM and 0.93 pM, respectively, compared to a value of 1.73 pM for the native Tf conjugate. Besides further validating our strategy of inhibiting iron release, these Tf mutants provide proof-of-principle that site-directed mutagenesis offers an alternative method for improving the drug carrier efficacy of Tf.


Journal of Biological Chemistry | 2001

Competitive Binding of Bismuth to Transferrin and Albumin in Aqueous Solution and in Blood Plasma

Hongzhe Sun; Hongyan Li; Anne B. Mason; Robert C. Woodworth; Peter J. Sadler

Several bismuth compounds are currently used as antiulcer drugs, but their mechanism of action is not well established. Proteins are thought to be target sites. In this work we establish that the competitive binding of Bi3+ to the blood serum proteins albumin and transferrin, as isolated proteins and in blood plasma, can be monitored via observation of 1H and13C NMR resonances of isotopically labeled [ε-13C]Met transferrin. We show that Met132 in the I132M recombinant N-lobe transferrin mutant is a sensitive indicator of N-lobe metal binding. Bi3+binds to the specific Fe3+ sites of transferrin and the observed shifts of Met resonances suggest that Bi3+ induces similar conformational changes in the N-lobe of transferrin in aqueous solution and plasma. Bi3+ binding to albumin is nonspecific and Cys34 is not a major binding site, which is surprising because Bi3+ has a high affinity for thiolate sulfur. This illustrates that the potential target sites for metals (in this case Bi3+) in proteins depend not only on their presence but also on their accessibility. Bi3+ binds to transferrin in preference to albumin both in aqueous solution and in blood plasma.


Current Topics in Membranes | 2012

Transferrin-Mediated Cellular Iron Delivery

Ashley N. Luck; Anne B. Mason

Essential to iron homeostasis is the transport of iron by the bilobal protein human serum transferrin (hTF). Each lobe (N- and C-lobe) of hTF forms a deep cleft which binds a single Fe(3+). Iron-bearing hTF in the blood binds tightly to the specific transferrin receptor (TFR), a homodimeric transmembrane protein. After undergoing endocytosis, acidification of the endosome initiates the release of Fe(3+) from hTF in a TFR-mediated process. Iron-free hTF remains tightly bound to the TFR at acidic pH; following recycling back to the cell surface, it is released to sequester more iron. Efficient delivery of iron is critically dependent on hTF/TFR interactions. Therefore, identification of the pH-specific contacts between hTF and the TFR is crucial. Recombinant protein production has enabled deconvolution of this complex system. The studies reviewed herein support a model in which pH-induced interrelated events control receptor-stimulated iron release from each lobe of hTF.


Journal of Molecular Biology | 2010

The Unique Kinetics of Iron Release from Transferrin: The Role of Receptor, Lobe-Lobe Interactions and Salt at Endosomal pH

Shaina L. Byrne; N. Dennis Chasteen; Ashley N. Steere; Anne B. Mason

Transferrins are a family of bilobal iron-binding proteins that play the crucial role of binding ferric iron and keeping it in solution, thereby controlling the levels of this important metal. Human serum transferrin (hTF) carries one iron in each of two similar lobes. Understanding the detailed mechanism of iron release from each lobe of hTF during receptor-mediated endocytosis has been extremely challenging because of the active participation of the transferrin receptor (TFR), salt, a chelator, lobe-lobe interactions, and the low pH within the endosome. Our use of authentic monoferric hTF (unable to bind iron in one lobe) or diferric hTF (with iron locked in one lobe) provided distinct kinetic end points, allowing us to bypass many of the previous difficulties. The capture and unambiguous assignment of all kinetic events associated with iron release by stopped-flow spectrofluorimetry, in the presence and in the absence of the TFR, unequivocally establish the decisive role of the TFR in promoting efficient and balanced iron release from both lobes of hTF during one endocytic cycle. For the first time, the four microscopic rate constants required to accurately describe the kinetics of iron removal are reported for hTF with and without the TFR. Specifically, at pH 5.6, the TFR enhances the rate of iron release from the C-lobe (7-fold to 11-fold) and slows the rate of iron release from the N-lobe (6-fold to 15-fold), making them more equivalent and producing an increase in the net rate of iron removal from Fe(2)hTF. Calculated cooperativity factors, in addition to plots of time-dependent species distributions in the absence and in the presence of the TFR, clearly illustrate the differences. Accurate rate constants for the pH and salt-induced conformational changes in each lobe precisely delineate how delivery of iron within the physiologically relevant time frame of 2 min might be accomplished.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Noncanonical interactions between serum transferrin and transferrin receptor evaluated with electrospray ionization mass spectrometry

Rachael Leverence; Anne B. Mason; Igor A. Kaltashov

The primary route of iron acquisition in vertebrates is the transferrin receptor (TfR) mediated endocytotic pathway, which provides cellular entry to the metal transporter serum transferrin (Tf). Despite extensive research efforts, complete understanding of Tf-TfR interaction mechanism is still lacking owing to the complexity of this system. Electrospray ionization mass spectrometry (ESI MS) is used in this study to monitor the protein/receptor interaction and demonstrate the ability of metal-free Tf to associate with TfR at neutral pH. A set of Tf variants is used in a series of competition and displacement experiments to bracket TfR affinity of apo-Tf at neutral pH (0.2–0.6 μM). Consistent with current models of endosomal iron release from Tf, acidification of the protein solution results in a dramatic change of binding preferences, with apo-Tf becoming a preferred receptor binder. Contrary to the current models implying that the apo-Tf/TfR complex dissociates almost immediately upon exposure to the neutral environment at the cell surface, our data indicate that this complex remains intact. Iron-loaded Tf displaces apo-Tf from TfR, making it available for the next cycle of iron binding, transport and delivery to tissues. However, apo-Tf may still interfere with the cellular uptake of engineered Tf molecules whose TfR affinity is affected by various modifications (e.g., conjugation to cytotoxic molecules). This work also highlights the great potential of ESI MS as a tool capable of providing precise details of complex protein-receptor interactions under conditions that closely mimic the environment in which these encounters occur in physiological systems.

Collaboration


Dive into the Anne B. Mason's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross T. A. MacGillivray

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Valerie C. Smith

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Dennis Chasteen

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Igor A. Kaltashov

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge