Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Boney is active.

Publication


Featured researches published by Anne Boney.


Journal of Inherited Metabolic Disease | 2005

Hepatocellular carcinoma in glycogen storage disease type Ia: a case series.

Luis M. Franco; V. Krishnamurthy; Deeksha Bali; David A. Weinstein; Pamela Arn; Bryan M. Clary; Anne Boney; Jennifer A. Sullivan; Donald P. Frush; Yuan-Tsong Chen; Priya S. Kishnani

SummaryWe present a series of 8 patients (6 males, 2 females) with hepatocellular carcinoma (HCC) and glycogen storage disease type Ia (GSD Ia). In this group, the age at which treatment was initiated ranged from birth to 39 years (mean 9.9 years). All patients but one were noncompliant with treatment. Hepatic masses were first detected at an age range of 13–45 years (mean 28.1 years). Age at diagnosis of HCC ranged from 19 to 49 years (mean 36.9 years). Duration between the diagnosis of liver adenomas and the diagnosis of HCC ranged from 0 to 28 years (mean 8.8 years, SD=11.5). Two patients had positive hepatitis serologies (one hepatitis B, one hepatitis C). α-Fetoprotein (AFP) was normal in 6 of the 8 patients. Carcinoembryonic antigen (CEA) was normal in the 5 patients in which it was measured. Current guidelines recommend abdominal ultrasonography with AFP and CEA levels every 3 months once patients develop hepatic lesions. Abdominal CT or MRI is advised when the lesions are large or poorly defined or are growing larger. We question the reliability of AFP and CEA as markers for HCC in GSD Ia. Aggressive interventional management of masses with rapid growth or poorly defined margins may be necessary to prevent the development of HCC in this patient population.


Genetics in Medicine | 2010

Glycogen Storage Disease Type III diagnosis and management guidelines

Priya S. Kishnani; Stephanie Austin; Pamela Arn; Deeksha Bali; Anne Boney; Laura E. Case; Wendy K. Chung; Dev M. Desai; Areeg H. El-Gharbawy; Ronald G. Haller; G. Peter; A. Smit; Alastair D. Smith; Lisa D. Hobson-Webb; Stephanie Burns Wechsler; David A. Weinstein; Michael S. Watson

Purpose: Glycogen storage disease type III is a rare disease of variable clinical severity affecting primarily the liver, heart, and skeletal muscle. It is caused by deficient activity of glycogen debranching enzyme, which is a key enzyme in glycogen degradation. Glycogen storage disease type III manifests a wide clinical spectrum. Individuals with glycogen storage disease type III present with hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Those with type IIIa have symptoms related to liver disease and progressive muscle (cardiac and skeletal) involvement that varies in age of onset, rate of disease progression, and severity. Those with type IIIb primarily have symptoms related to liver disease. This guideline for the management of glycogen storage disease type III was developed as an educational resource for health care providers to facilitate prompt and accurate diagnosis and appropriate management of patients.Methods: An international group of experts in various aspects of glycogen storage disease type III met to review the evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management.Results: This management guideline specifically addresses evaluation and diagnosis across multiple organ systems (cardiovascular, gastrointestinal/nutrition, hepatic, musculoskeletal, and neuromuscular) involved in glycogen storage disease type III. Conditions to consider in a differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, hepatic transplantation, and prenatal diagnosis, are addressed.Conclusions: A guideline that will facilitate the accurate diagnosis and appropriate management of individuals with glycogen storage disease type III was developed. This guideline will help health care providers recognize patients with all forms of glycogen storage disease type III, expedite diagnosis, and minimize stress and negative sequelae from delayed diagnosis and inappropriate management. It will also help identify gaps in scientific knowledge that exist today and suggest future studies.


Journal of Inherited Metabolic Disease | 2003

Evaluation of 3-methylcrotonyl-CoA carboxylase deficiency detected by tandem mass spectrometry newborn screening

Dwight D. Koeberl; David S. Millington; Wendy Smith; S. D. Weavil; Joseph Muenzer; Shawn E. McCandless; Priya S. Kishnani; Marie McDonald; Shu H. Chaing; Anne Boney; E. Moore; Dianne M. Frazier

Summary: Since the addition of tandem mass spectrometry (MS/MS) to the North Carolina Newborn Screening Program, 20 infants with two consecutive elevated 3-hydroxyisovalerylcarnitine (C5OH) levels have been evaluated for evidence of inborn errors of metabolism associated with this metabolite. Ten of these 20 infants had significant concentrations of both 3-hydroxyisovaleric acid and 3-methylcrotonylglycine in their urine, suggestive of 3-methylcrotonyl-CoA carboxylase (3-MCC) deficiency. Four of these 10 were infants whose abnormal metabolites were found to be of maternal origin. Of 8 patients with probable 3-MCC deficiency, 7 have been tested and found to have the enzyme deficiency confirmed in lymphoblasts or cultured fibroblasts; one of these 7 infants had only marginally decreased 3-MCC activity in lymphocytes but deficient 3-MCC in fibroblasts. We estimate the incidence of 3-MCC deficiency at 1:64000 live births in North Carolina. We conclude that MS/MS newborn screening will detect additional inborn errors of metabolism, such as 3-MCC deficiency, not traditionally associated with newborn screening. The evaluation of newborns with two abnormally elevated C5OH levels on MS/MS newborn screening should include, at least, urine organic acid analysis by capillary GC-MS and a plasma acylcarnitine profile by MS/MS. Long-term follow-up is needed to determine the outcome of presymptomatically diagnosed patients with 3-MCC deficiency by MS/MS newborn screening.


Genetics in Medicine | 2014

Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics.

Priya S. Kishnani; Stephanie Austin; Jose E. Abdenur; Pamela Arn; Deeksha Bali; Anne Boney; Wendy K. Chung; Aditi I Dagli; David C. Dale; Dwight D. Koeberl; Michael J. Somers; Stephanie Burns Wechsler; David A. Weinstein; Joseph I. Wolfsdorf; Michael S. Watson

Disclaimer: This guideline is designed primarily as an educational resource for clinicians to help them provide quality medical services. Adherence to this guideline is completely voluntary and does not necessarily ensure a successful medical outcome. This guideline should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this guideline. Clinicians also are advised to take notice of the date this guideline was adopted and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Purpose:Glycogen storage disease type I (GSD I) is a rare disease of variable clinical severity that primarily affects the liver and kidney. It is caused by deficient activity of the glucose 6-phosphatase enzyme (GSD Ia) or a deficiency in the microsomal transport proteins for glucose 6-phosphate (GSD Ib), resulting in excessive accumulation of glycogen and fat in the liver, kidney, and intestinal mucosa. Patients with GSD I have a wide spectrum of clinical manifestations, including hepatomegaly, hypoglycemia, lactic acidemia, hyperlipidemia, hyperuricemia, and growth retardation. Individuals with GSD type Ia typically have symptoms related to hypoglycemia in infancy when the interval between feedings is extended to 3–4 hours. Other manifestations of the disease vary in age of onset, rate of disease progression, and severity. In addition, patients with type Ib have neutropenia, impaired neutrophil function, and inflammatory bowel disease. This guideline for the management of GSD I was developed as an educational resource for health-care providers to facilitate prompt, accurate diagnosis and appropriate management of patients.Methods:A national group of experts in various aspects of GSD I met to review the evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management.Results:This management guideline specifically addresses evaluation and diagnosis across multiple organ systems (hepatic, kidney, gastrointestinal/nutrition, hematologic, cardiovascular, reproductive) involved in GSD I. Conditions to consider in the differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, hepatic and renal transplantation, and prenatal diagnosis, are also addressed.Conclusion:A guideline that facilitates accurate diagnosis and optimal management of patients with GSD I was developed. This guideline helps health-care providers recognize patients with all forms of GSD I, expedite diagnosis, and minimize adverse sequelae from delayed diagnosis and inappropriate management. It also helps to identify gaps in scientific knowledge that exist today and suggests future studies.Genet Med 16 11.


Veterinary Pathology | 2001

Canine Model and Genomic Structural Organization of Glycogen Storage Disease Type Ia (GSD Ia)

Priya S. Kishnani; E. Faulkner; S. VanCamp; Marie Jackson; Talmage T. Brown; Anne Boney; Dwight D. Koeberl; Yuan-Tsong Chen

A canine model of glycogen storage disease Ia (GSD Ia), similar clinically, biochemically, and pathologically to the human disease, was established by crossbreeding Maltese and Beagle dogs carrying a mutated, defective glucose-6-phosphatase (G-6-Pase) gene. Ten puppies were born in three litters from these crossbreedings. Six were homozygous for the previously described M121I GSD Ia mutation. Of these six affecteds, two were stillborn, and one died at 2, 32, and 60 days of life, respectively (puppies A, B, C, D, E), while one is alive at age 15 months (puppy F). Affected puppies exhibited tremors, weakness, and neurologic signs when hypoglycemic. They had postnatal growth retardation and progressive hepatomegaly. Biochemical abnormalities included fasting hypoglycemia, hyperlactacidemia, hypercholesterolemia, hypertriglyceridemia, and hyperuricemia. Microscopic examination of tissues from affected puppies showed diffuse, marked hepatocellular vacuolation, with distended clear hepatocytes and central to marginally located rounded nuclei. In the kidneys of puppies D and E, there was segmental glomerular sclerosis and vacuolation of proximal convoluted tubular epithelium. Biochemical analysis revealed increased liver glycogen content and isolated markedly reduced G-6-Pase enzyme activity in liver and kidney. The canine G-6-Pase gene was characterized by screening a canine genomic library. It spans ~ 11.8 kb and consists of five exons with >90% amino acid sequence homology to the derived human sequence. The first 1.5 kb of the 5′ region was sequenced and contains several putative response element motifs homologous to the human 5′ region. Establishment of this canine colony of GSD Ia that closely resembles human disease and isolation of the canine genomic gene provides an excellent model for studying pathophysiology and long-term complications and an opportunity to develop novel therapeutic approaches such as drug and gene therapy.


Gene Therapy | 2002

Delivery of glucose-6-phosphatase in a canine model for glycogen storage disease, type Ia, with adeno-associated virus (AAV) vectors.

Rm Beaty; Marie Jackson; Denise Peterson; Andrew Bird; Talmage T. Brown; Daniel K. Benjamin; T Juopperi; Priya S. Kishnani; Anne Boney; Yuan-Tsong Chen; Dwight D. Koeberl

Therapy in glycogen storage disease type Ia (GSD Ia), an inherited disorder of carbohydrate metabolism, relies on nutritional support that postpones but fails to prevent long-term complications of GSD Ia. In the canine model for GSD Ia, we evaluated the potential of intravenously delivered adeno-associated virus (AAV) vectors for gene therapy. In three affected canines, liver glycogen was reduced following hepatic expression of canine glucose-6-phosphatase (G6Pase). Two months after AAV vector administration, one affected dog had normalization of fasting glucose, cholesterol, triglycerides, and lactic acid. Concatamerized AAV vector DNA was confirmed by Southern blot analysis of liver DNA isolated from treated dogs, as head-to-tail, head-to-head, and tail-to-tail concatamers. Six weeks after vector administration, the level of vector DNA signal in each dog varied from one to five copies per cell, consistent with variation in the efficiency of transduction within the liver. AAV vector administration in the canine model for GSD Ia resulted in sustained G6Pase expression and improvement in liver histology and in biochemical parameters.


Journal of Inherited Metabolic Disease | 1996

Clinical and laboratory findings in four patients with the non-progressive hepatic form of type IV glycogen storage disease

Allyn McConkie-Rosell; C. Wilson; D. A. Piccoli; J. Boyle; T. DeClue; Priya S. Kishnani; Jianjun Shen; Anne Boney; B. I. Brown; Yuan-Tsong Chen

SummaryThe classic clinical presentation for type IV glycogen storage disease (branching enzyme deficiency, GSD IV) is hepatosplenomegaly with failure to thrive occurring in the first 18 months of life, followed by progressive liver failure and death by age 5 years. Although there have been two patients without apparent liver progression previously reported, no long-term follow-up clinical data have been available. We present here the clinical spectrum of the non-progressive liver form of GSD IV in four patients, and long-term follow-up of the oldest identified patients (ages 13 and 20 years). None has developed progressive liver cirrhosis, skeletal muscle, cardiac or neurological involvement, and none has been transplanted. Branching enzyme activity was also measured in cultured skin fibroblasts from patients with the classic liver progressive, the early neonatal fatal, and the non-progressive hepatic presentations of GSD IV. The residual branching enzyme activity in the patients without progression was not distinguishable from the other forms and could not be used to predict the clinical course. Our data indicate that GSD IV does not always necessitate hepatic transplantation and that caution should be used when counselling patients regarding the prognosis of GSD IV. Patients should be carefully monitored for evidence of progression before recommending liver transplantation.


Clinical Pediatrics | 2001

Frequency of Celiac Disease in Individuals with Down Syndrome in the United States

Joanne Mackey; William R. Treem; Gordon Worley; Anne Boney; Patricia Hart; Priya S. Kishnani

Ninety-three individuals with Down syndrome (DS) were screened to investigate the prevalence of celiac disease (CD) in the United States. Five of the 93 individuals were antiendomysial antibody (EMA) positive. Of the 5 who tested positive for EMA, 4 were biopsied, 1 refused biopsy. Three of the 4 individuals biopsied manifested changes of CD on small bowel biopsy. This gives a frequency of 3.2% of confirmed CD in our DS individuals and suggests the need for periodic screening for celiac disease in this population.


Pediatric Radiology | 2007

Fractures in children with Pompe disease: a potential long-term complication

Laura E. Case; Rabi Hanna; Donald P. Frush; Vidya Krishnamurthy; Stephanie DeArmey; Joanne Mackey; Anne Boney; Claire Morgan; Deyanira Corzo; Susan Bouchard; Thomas J. Weber; Yuan-Tsong Chen; Priya S. Kishnani

BackgroundPompe disease (glycogen storage disease type II or acid maltase deficiency) is an autosomal recessive disorder caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA). Classic infantile-onset disease, characterized by cardiomegaly and profound weakness, leads to death in the first year of life from cardiorespiratory failure. Reversal of cardiomyopathy and improved motor function have been shown in clinical trials of rhGAA enzyme replacement therapy (ERT) with alglucosidase alfa (Myozyme), recently approved for clinical use. Increased survival potentially unmasks long-term complications of this previously lethal disease, including risk of skeletal fracture, recently identified at our institution and not previously reported in children with Pompe disease.ObjectiveTo report the risk of fracture in children with Pompe disease with increased survival with ERT.Materials and methodsWe present four cases of fracture in patients with classic infantile Pompe disease treated with ERT at our institution, and review a study database for additional reports of fracture in this population.ResultsWe review 19 fractures in 14 children with Pompe disease on ERT.ConclusionRadiologists should be familiar with and vigilant for the association of fractures and increased survival on ERT in children with Pompe disease. We discuss potential mechanisms, implications for radiographic surveillance, potential intervention, and needs for further research.


Molecular Genetics and Metabolism | 2014

Variability of disease spectrum in children with liver phosphorylase kinase deficiency caused by mutations in the PHKG2 gene

Deeksha Bali; Jennifer L. Goldstein; Keri Fredrickson; Catherine Rehder; Anne Boney; Stephanie Austin; David A. Weinstein; Richard E. Lutz; Avihu Boneh; Priya S. Kishnani

Liver phosphorylase b kinase (PhK) deficiency (glycogen storage disease type IX), one of the most common causes of glycogen storage disease, is caused by mutations in the PHKA2, PHKB, and PHKG2 genes. Presenting symptoms include hepatomegaly, ketotic hypoglycemia, and growth delay. Clinical severity varies widely. Autosomal recessive mutations in the PHKG2 gene, which cause about 10-15% of cases, have been associated with severe symptoms including increased risk of liver cirrhosis in childhood. We have summarized the molecular, biochemical, and clinical findings in five patients, age 5-16 years, diagnosed with liver PhK deficiency caused by PHKG2 gene mutations. We have identified five novel and two previously reported mutations in the PHKG2 gene in these five patients. Clinical severity was variable among these patients. Histopathological studies were performed for four of the patients on liver biopsy samples, all of which showed signs of fibrosis but not cirrhosis. One of the patients (aged 9 years) developed a liver adenoma which later resolved. All patients are currently doing well. Their clinical symptoms have improved with age and treatment. These cases add to the current knowledge of clinical variability in patients with PHKG2 mutations. Long term studies, involving follow-up of these patients into adulthood, are needed.

Collaboration


Dive into the Anne Boney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge