Anne C. Sittig
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne C. Sittig.
Experimental Brain Research | 1998
R.J. Van Beers; Anne C. Sittig; J.J. Denier van der Gon
Abstract The purpose of this study was to determine the precision of proprioceptive localization of the hand in humans. We derived spatial probability distributions which describe the precision of localization on the basis of three different sources of information: proprioceptive information about the left hand, proprioceptive information about the right hand, and visual information. In the experiment subjects were seated at a table and had to perform three different position-matching tasks. In each task, the position of a target and the position of an indicator were available in a different combination of two of these three sources of information. From the spatial distributions of indicated positions in these three conditions, we derived spatial probability distributions for proprioceptive localization of the two hands and for visual localization. For proprioception we found that localization in the radial direction with respect to the shoulder is more precise than localization in the azimuthal direction. The distributions for proprioceptive localization also suggest that hand positions closer to the shoulder are localized more precisely than positions further away. These patterns can be understood from the geometry of the arm. In addition, the variability in the indicated positions suggests that the shoulder and elbow angles are known to the central nervous system with a precision of 0.6–1.1°. This is a considerably better precision than the values reported in studies on perception of these angles. This implies that joint angles, or quantities equivalent to them, are represented in the central nervous system more precisely than they are consciously perceived. For visual localization we found that localization in the azimuthal direction with respect to the cyclopean eye is more precise than localization in the radial direction. The precision of the perception of visual direction is of the order of 0.2–0.6°.
Experimental Brain Research | 1996
R.J. Van Beers; Anne C. Sittig; J.J. Denier van der Gon
To enable us to study how humans combine simultaneously present visual and proprioceptive position information, we had subjects perform a matching task. Seated at a table, they placed their left hand under the table concealing it from their gaze. They then had to match the proprioceptively perceived position of the left hand using only proprioceptive, only visual or both proprioceptive and visual information. We analysed the variance of the indicated positions in the various conditions. We compared the results with the predictions of a model in which simultaneously present visual and proprioceptive position information about the same object is integrated in the most effective way. The results are in disagreement with the model: the variance of the condition with both visual and proprioceptive information is smaller than expected from the variances of the other conditions. This means that the available information was integrated in a highly effective way. Furthermore, the results suggest that additional information was used. This information might have been visual information about body parts other than the fingertip or it might have been visual information about the environment.
Experimental Brain Research | 1991
J. B. de Graaf; Anne C. Sittig; J. J. Denier van der Gon
SummaryInformation about the direction of the virtual line between two positions in space (directional information) is used in many decision-making and motor tasks. We investigated how accurately directional information is processed by the brain. Subjects performed two types of task. In both tasks they sat at a table. In the first task they had to move their hand slowly and accurately from an initial position 40 cm in front of them to visually presented targets at a distance of 30 cm from the initial position (movement task). We analysed the initial movement direction. In the second task subjects had to position pointers in the direction of the targets as accurately as they could (perceptive task). We found that in the movement task the subjects started the movements to most targets in a direction that deviated consistently from the direction of the straight line between initial position and target position. The maximum deviation ranged from 5–10° for the various subjects. The mean standard deviation was 4°. In the perceptive task the subjects positioned the pointer in similarly deviating directions. Furthermore, we found that the maximum deviation in the pointer direction depended on the length of the pointer: the smaller the pointer, the larger the consistent deviations in the pointer direction. The shortest pointer showed deviations comparable to the deviations found in the movement task. These findings suggest that the deviations in the two tasks stem from the same source.
Experimental Brain Research | 1999
R.J. Van Beers; Anne C. Sittig; J.J. Denier van der Gon
Abstract In a previous study we investigated how the CNS combines simultaneous visual and proprioceptive information about the position of the finger. We found that localization of the index finger of a seen hand was more precise (a smaller variance) than could reasonably be expected from the precision of localization on the basis of vision only and proprioception only. This suggests that, in localizing the tip of the index finger of a seen hand, the CNS may make use of more information than proprioceptive information and visual information about the fingertip. In the present study we investigate whether this additional information stems from additional sources of sensory information. In experiment 1 we tested whether seeing an entire arm instead of only the fingertip gives rise to a more precise proprioceptive and/or visual localization of that fingertip. In experiment 2 we checked whether the presence of a structured visual environment leads to a more precise proprioceptive localization of the index finger of an unseen hand. In experiment 3 we investigated whether looking in the direction of the index finger of an unseen hand improves proprioceptive localization of that finger. We found no significant effect in any of the experiments. The results refute the hypothesis that the investigated effects can explain the previously reported very precise localization of a seen hand. This suggests that localization of a seen finger is based exclusively on proprioception and on vision of the finger. The results suggest that these sensory signals may contain more information than is described by the magnitude of their variances.
Experimental Brain Research | 1994
J. B. de Graaf; Anne C. Sittig; J. J. Denier van der Gon
In a previous study we found that the initial direction of slow, goal-directed arm movements deviates consistently from the direction of the actual straight line between the starting position and the target position. We now investigate whether these deviations are caused by imperfections or peculiarities in the processing of vision-related spatial information, such as retinal information, and eye- and head-position information. This could lead to incorrect localization of the target relative to the starting position. Subjects were seated in front of a horizontal surface and had to move their arm slowly and accurately in the direction of target positions. We varied the amount of vision-related spatial information. In experiment 1, subjects were presented with visual targets and could see their moving arm. In experiment 2, the subjects were again presented with visual targets, but now they could not see their moving arm. In experiment 3, the subjects were blindfolded and had to move their arm towards tactile targets. In all three experiments we found comparable consistent deviations in the initial movement direction. We also instructed congenitally and early-blind subjects to move their arm towards tactile targets. Their performance showed deviations congruous with those found in the sighted subjects, and possibly somewhat larger. We conclude that the deviations in the initial movement direction of slow, goal-directed arm movements are not primarily visually based. The deviations are generated after all spatial information has been integrated.
Attention Perception & Psychophysics | 1996
J. B. de Graaf; J. J. Denier van der Gon; Anne C. Sittig
It has been found that the estimate of relative target direction is consistently biased. Relative target direction refers to the direction in which a target is located relative to another location in space (e.g., a starting position in the case of goal-directed movements). In this study, we have tested two models that could underlie this biased estimate. The first proposed model is based on a distorted internal representation of locations (i.e., we perceive a target at the “wrong” location). We call this thedistorted location model. The second model is based on the idea that the derivation of target direction from spatial information about starting and target position is biased. We call this thebiased direction model. These two models lead to different predictions of the deviations that occur when the distance between the starting position and the target position is increased. Since we know from previous studies that the initial direction of slow arm movements reflects the target direction estimate, we tested the two models by analyzing the initial direction of slow arm movements. The results show that the biased direction model can account for the biases we find in the target direction estimate for various target distances, whereas the distorted location model cannot. In two additional experiments, we explored this model further. The results show that the biases depend only on the orientation of the line through starting position and target position relative to the plane through longitudinal head or body axis and starting position. We conclude that the initial part of (slow) goal-directed arm movements is planned on the basis of a (biased) target direction estimate and not on the basis of a wrong internal representation of target location. This supports the hypothesis that we code displacements of our limbs in space as a vector.
Vision Research | 1994
Anne C. Sittig; Jozina B. de Graaf
Subjects performed a three-dot alignment in the frontoparallel plane. We found systematic deviations in alignment, especially for diagonally oriented stimuli. The biases did not depend on the angular size of the stimuli which was varied between 0.8 and 20 deg. We put forward a tentative explanation based on saccade trajectories. Extending the task to judgements of the straightness of virtual lines consisting of a varying number of dots showed that the biases decrease gradually when the number of dots increases. This suggests that there are two different and competing mechanisms to judge the straightness of virtual lines.
Attention Perception & Psychophysics | 2000
Nicole Schoumans; Anne C. Sittig
We investigated whether, in the human visual system, the mechanisms responsible for relative location judgments are the same when those judgments are made in the context of illusory contours and in the context of mentally joining two points. We asked subjects to align a dot with the oblique contour of an illusory surface or to align a dot with two markers at an oblique orientation. The systematic errors differed in direction for these two conditions. All the systematic errors were orientation dependent. The errors in aligning a dot with an illusory contour seem to be related to the asymmetrical shape of the single objects, which are able to induce an illusory contour, as well as figure-ground segregation.
Journal of Experimental Psychology: Human Perception and Performance | 1998
Paula M. T. Smeele; Dominic W. Massaro; Michael M. Cohen; Anne C. Sittig
Vision Research | 1993
Ehud Zohary; Anne C. Sittig