Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Catherine Heuskin is active.

Publication


Featured researches published by Anne-Catherine Heuskin.


Radiation Research | 2013

Low-LET Proton Irradiation of A549 Non-small Cell Lung Adenocarcinoma Cells: Dose Response and RBE Determination

Anne-Catherine Wéra; Anne-Catherine Heuskin; Hélène Riquier; Carine Michiels; Stéphane Lucas

Since 1957, broad proton beam radiotherapy with a spread out Bragg peak has been used for cancer treatment. More recently, studies on the use of proton therapy in the treatment of non-small cell lung cancer (NSCLC) were performed and although the benefit of using protons for the treatment of NSCLC is recognized, more work is needed to gather additional data for the understanding of cell response. Human A549 cell survival was evaluated by colony forming assay 11 days after 10 keV/μm proton beam irradiation at 0.1 and 1 Gy/min. The residual energy of the proton beam at the location of the irradiated cells was 3.9 MeV. In parallel, early effects on the cell viability and DNA damage were assessed and DNA synthesis was measured. The survival curve obtained was fitted with both the linear and the induced-repair models, as a hyper-radiosensitivity was evidenced at very low doses. Above 0.5 Gy, a linear shape was observed with the α parameter equal to 0.824 ± 0.029 Gy−1. In addition, early cell death and cell proliferation arrest were enhanced. Moreover, a clear correlation between DNA damage and surviving fraction was observed. Finally, comparisons with X ray results indicate that proton irradiation at 10 keV/μm enhanced the tumor radiosensitivity with a significant dose-dependent decrease in the survival fraction. The RBE value of 1.9 ± 0.4 obtained for a 10% survival support this observation.


Journal of Evolutionary Biology | 2014

Gateway to genetic exchange? DNA double‐strand breaks in the bdelloid rotifer Adineta vaga submitted to desiccation

Boris Hespeels; M. Knapen; D. Hanot-Mambres; Anne-Catherine Heuskin; F. Pineux; Stéphane Lucas; Romain Koszul; K. Van Doninck

The bdelloid rotifer lineage Adineta vaga inhabits temporary habitats subjected to frequent episodes of drought. The recently published draft sequence of the genome of A. vaga revealed a peculiar genomic structure incompatible with meiosis and suggesting that DNA damage induced by desiccation may have reshaped the genomic structure of these organisms. However, the causative link between DNA damage and desiccation has never been proven to date in rotifers. To test for the hypothesis that desiccation induces DNA double‐strand breaks (DSBs), we developed a protocol allowing a high survival rate of desiccated A. vaga. Using pulsed‐field gel electrophoresis to monitor genomic integrity, we followed the occurrence of DSBs in dried bdelloids and observed an accumulation of these breaks with time spent in dehydrated state. These DSBs are gradually repaired upon rehydration. Even when the genome was entirely shattered into small DNA fragments by proton radiation, A. vaga individuals were able to efficiently recover from desiccation and repair a large amount of DSBs. Interestingly, when investigating the influence of UV‐A and UV‐B exposure on the genomic integrity of desiccated bdelloids, we observed that these natural radiations also caused important DNA DSBs, suggesting that the genome is not protected during the desiccated stage but that the repair mechanisms are extremely efficient in these intriguing organisms.


Radiotherapy and Oncology | 2013

Comparison of X-ray and alpha particle effects on a human cancer and endothelial cells: survival curves and gene expression profiles.

Hélène Riquier; Anne-Catherine Wéra; Anne-Catherine Heuskin; Olivier Feron; Stéphane Lucas; Carine Michiels

BACKGROUND AND PURPOSE Tumours are now considered as complex tissues including endothelial cells of the tumour vasculature, which can decrease radiotherapy efficacy. It is thus important to better characterise the response of both types of cells to irradiation. This study investigated the effects of X-ray and alpha particle irradiation on cancer and endothelial cells. MATERIALS AND METHODS A549 non-small-cell lung adenocarcinoma cells and human endothelial cells (EC) were exposed to X-rays or alpha particles. Responses were studied by clonogenic assays and nuclei staining. A gene expression study was performed by using Taqman low density array and the results were validated by qRT-PCR and ELISA. RESULTS The relative biological effectiveness of alpha particles was estimated to be 5.5 and 4.6 for 10% survival of A549 cells and EC, respectively. Nuclei staining indicated that mitotic catastrophe was the main type of cell death induced by X-rays and alpha particles. Both ionising radiations induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. CONCLUSIONS Alpha particle irradiations are more effective than X-rays. The gene expression changes observed in both cell types after alpha particle or X-ray exposure showed possible crosstalk between both cell types that may induce the development of radioresistance.


Nanotechnology | 2016

LET-dependent radiosensitization effects of gold nanoparticles for proton irradiation.

Sha Li; Sébastien Penninckx; Linda Karmani; Anne-Catherine Heuskin; Kassandra Watillon; Riccardo Marega; Jerome Zola; Valentina Corvaglia; Géraldine Genard; Bernard Gallez; Olivier Feron; Philippe Martinive; Davide Bonifazi; Carine Michiels; Stéphane Lucas

The development of new modalities and protocols is of major interest to improve the outcome of cancer treatment. Given the appealing physical properties of protons and the emerging evidence of biological relevance of the use of gold nanoparticles (GNPs), the radiosensitization effects of GNPs (5 or 10 nm) have been investigated in vitro in combination with a proton beam of different linear energy transfer (LET). After the incubation with GNPs for 24 h, nanoparticles were observed in the cytoplasm of A431 cells exposed to 10 nm GNPs, and in the cytoplasm as well as the nucleus of cells exposed to 5 nm GNPs. Cell uptake of 0.05 mg ml-1 of GNPs led to 0.78 pg Au/cell and 0.30 pg Au/cell after 24 h incubation for 10 and 5 nm GNPs respectively. A marked radiosensitization effect of GNPs was observed with 25 keV μm-1 protons, but not with 10 keV μm-1 protons. This effect was more pronounced for 10 nm GNPs than for 5 nm GNPs. By using a radical scavenger, a major role of reactive oxygen species in the amplification of the death of irradiated cell was identified. All together, these results open up novel perspectives for using high-Z metallic NPs in protontherapy.


Radiation Research | 2013

Low-Dose Hypersensitivity and Bystander Effect are Not Mutually Exclusive in A549 Lung Carcinoma Cells after Irradiation with Charged Particles

Anne-Catherine Heuskin; Anne-Catherine Wéra; Hélène Riquier; Carine Michiels; Stéphane Lucas

The purpose of this study was to measure survival fraction of A549 lung carcinoma cells irradiated with charged particles of various LET and to determine mechanisms responsible for enhanced cell killing in the low-dose region. A549 cells were irradiated with a broadbeam of either 10 and 25 keV/μm protons or 100 keV/μm alpha particles and then processed for clonogenic assays and phospho-histone H3 staining. The survival fraction of unirradiated A549 cells co-cultured with irradiated cells was also evaluated. A549 cells were shown to exhibit low-dose hypersensitivity (HRS) for both protons and alpha particles. The dose threshold at which HRS occurs decreased with increasing linear energy transfer (LET), whereas αs, the initial survival curve slope, increased with increasing LET. In addition, the enhanced cell killing observed after irradiation with alpha particles was partly attributed to the bystander effect, due to the low proportion of hit cells at very low doses. Co-culture experiments suggest a gap junction-mediated bystander signal. Our results indicate that HRS is likely to be dependent on LET, and that a bystander effect and low-dose hypersensitivity may co-exist within a given cell line.


Radiation Research | 2014

Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells

Nikhil Vadhavkar; Christopher Pham; Walter Georgescu; Thomas Deschamps; Anne-Catherine Heuskin; Jonathan Tang; Sylvain V. Costes

In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (μm). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of ∼1.55 μm sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/μm along tracks with an overall relative error of 12%, for LET ranging between 30–350 keV/μm and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our model are based on experimental RIF and are three times larger than the hypothetical LEM voxel used to fit survival curves. Our model is therefore an alternative to previous approaches that provides a testable biological mechanism (i.e., RIF). In addition, we propose that DSB pairing will help develop more accurate alternatives to the linear cancer risk model (LNT) currently used for regulating exposure to very low levels of ionizing radiation.


Cell Death and Disease | 2018

Proton irradiation orchestrates macrophage reprogramming through NFκB signaling

Géraldine Genard; Anne-Catherine Wéra; Camille Huart; Benjamin Le Calvé; Sébastien Penninckx; Antoine Fattaccioli; Tijani Tabarrant; Catherine Demazy; Noelle Ninane; Anne-Catherine Heuskin; Stéphane Lucas; Carine Michiels

Tumor-associated macrophages (TAMs) represent potential targets for anticancer treatments as these cells play critical roles in tumor progression and frequently antagonize the response to treatments. TAMs are usually associated to an M2-like phenotype, characterized by anti-inflammatory and protumoral properties. This phenotype contrasts with the M1-like macrophages, which exhibits proinflammatory, phagocytic, and antitumoral functions. As macrophages hold a high plasticity, strategies to orchestrate the reprogramming of M2-like TAMs towards a M1 antitumor phenotype offer potential therapeutic benefits. One of the most used anticancer treatments is the conventional X-ray radiotherapy (RT), but this therapy failed to reprogram TAMs towards an M1 phenotype. While protontherapy is more and more used in clinic to circumvent the side effects of conventional RT, the effects of proton irradiation on macrophages have not been investigated yet. Here we showed that M1 macrophages (THP-1 cell line) were more resistant to proton irradiation than unpolarized (M0) and M2 macrophages, which correlated with differential DNA damage detection. Moreover, proton irradiation-induced macrophage reprogramming from M2 to a mixed M1/M2 phenotype. This reprogramming required the nuclear translocation of NFκB p65 subunit as the inhibition of IκBα phosphorylation completely reverted the macrophage re-education. Altogether, the results suggest that proton irradiation promotes NFκB-mediated macrophage polarization towards M1 and opens new perspectives for macrophage targeting with charged particle therapy.


Medical Physics | 2017

Metallic nanoparticles irradiated by low energy protons for radiation therapy: are there significant physical effects to enhance the dose delivery?

Anne-Catherine Heuskin; Bernard Gallez; Olivier Feron; Philippe Martinive; Carine Michiels; Stéphane Lucas

Purpose: To identify which physical properties of nanoparticles are correlated with the survival fraction of cells exposed in vitro to low‐energy protons in combination with nanoparticles. Methods: The Geant4 simulation toolkit (version 10.3) was used to model nanoparticles of different sizes (5–50 nm) and materials (Ti, Zr, Hf, Ta, Au, Pt), with or without an organic capping ensuring biocompatibility and to irradiate them with 1.3 or 4 MeV protons and 5.3 MeV alpha particles. The spectra of secondary electrons inside and at the nanoparticle surface were computed, as well as electron yields, Auger and organic capping contribution, trapping in metal bulk and linear energy transfer profiles as a function of distance from the nanoparticle center. In a next step, an in silico cell model was designed and loaded with gold nanoparticles, according to experimental uptake values. Dose to the cell was evaluated macroscopically and microscopically in 100 × 100 × 100 nm³ voxels for different radiation qualities. Results: The cell geometry showed that radiation enhancement is negligible for the gold concentration used and for any radiation quality. However, when the single nanoparticle geometry is considered, we observed a local LET in its vicinity considerably higher than for the water equivalent case (up to 5 keV/μm at the titanium nanoparticle surface compared to 2.5 keV/μm in the water case). The yield of secondary electrons per primary interaction with 1.3 MeV protons was found to be most favorable for titanium (1.54), platinum (1.44), and gold (1.32), although results for higher Z metals are probably underestimated due to the incomplete simulation of de‐excitation cascade in outer shells. It was also found that the organic capping contributed mostly to the production of low‐energy electrons, adding a spike of dose near the nanoparticle surface. Indeed, the yield for the coated gold nanoparticle increased to 1.53 when exposed to 1.3 MeV protons. Although most electrons are retained inside larger nanoparticles (50 nm), it was shown that their yield is comparable to smaller sizes and that the linear energy transfer profile is better. From a combination of ballistic and nanoparticle size factors, it was concluded that 10‐nm gold nanoparticles were better inducers of additional cell killing than 5‐nm gold nanoparticles, matching our previous in vitro study. Conclusions: Although effects from a physical standpoint are limited, the high linear energy transfer profile at the nanoparticle surface generates detrimental events in the cell, in particular ROS‐induced damage and local heating.


Cancers | 2015

Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System.

Hélène Riquier; Denis Abel; Anne-Catherine Wéra; Anne-Catherine Heuskin; Géraldine Genard; Stéphane Lucas; Carine Michiels

Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.


International Journal of Radiation Biology | 2014

Low dose hypersensitivity following in vitro cell irradiation with charged particles: Is the mechanism the same as with X-ray radiation?

Anne-Catherine Heuskin; Carine Michiels; Stéphane Lucas

Abstract Purpose: Among the low dose effects that have been discovered during the past decade, the low dose hypersensitivity (HRS) is of prime importance. This phenomenon, compared to irradiation at higher doses used in conventional radiotherapy, enhances cell killing per unit dose at low doses and is followed by an induced radioresistance (IRR) effect. On survival fraction curves, a deviation from the linear quadratic model can be observed. HRS has mainly been studied after irradiation with sparsely ionizing radiation. Little work has been done to check its actual existence after irradiation with medium and high linear energy transfer (LET) particles. This article reviews recent studies involving HRS following irradiation of rodent and human cells with protons, alpha particles and carbon ions and assesses the applicability of a photon HRS model to charged particles. Conclusion: We propose that the HRS threshold dose and the radiosensitive parameter αs may be LET and deoxyribonucleic acid (DNA) damage-clustering dependent. Combining the use of high-LET particles at low doses and chemotherapy strategies increasing the proportion of HRS-sensitive cells could become a good candidate treatment for radioresistant cancers.

Collaboration


Dive into the Anne-Catherine Heuskin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Feron

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Bernard Gallez

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Tang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge