Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Catrin Uhlemann is active.

Publication


Featured researches published by Anne-Catrin Uhlemann.


The Journal of Infectious Diseases | 2006

Decreasing pfmdr1 Copy Number in Plasmodium falciparum Malaria Heightens Susceptibility to Mefloquine, Lumefantrine, Halofantrine, Quinine, and Artemisinin

Amar Bir Singh Sidhu; Anne-Catrin Uhlemann; Stephanie G. Valderramos; Juan-Carlos Valderramos; Sanjeev Krishna; David A. Fidock

The global dissemination of drug-resistant Plasmodium falciparum is spurring intense efforts to implement artemisinin (ART)-based combination therapies for malaria, including mefloquine (MFQ)-artesunate and lumefantrine (LUM)-artemether. Clinical studies have identified an association between an increased risk of MFQ, MFQ-artesunate, and LUM-artemether treatment failures and pfmdr1 gene amplification. To directly address the contribution that pfmdr1 copy number makes to drug resistance, we genetically disrupted 1 of the 2 pfmdr1 copies in the drug-resistant FCB line, which resulted in reduced pfmdr1 mRNA and protein expression. These knockdown clones manifested a 3-fold decrease in MFQ IC(50) values, compared with that for the FCB line, verifying the role played by pfmdr1 expression levels in mediating resistance to MFQ. These clones also showed increased susceptibility to LUM, halofantrine, quinine, and ART. No change was observed for chloroquine. These results highlight the importance of pfmdr1 copy number in determining P. falciparum susceptibility to multiple agents currently being used to combat malaria caused by multidrug-resistant parasites.


Mbio | 2012

Identification of a Highly Transmissible Animal-Independent Staphylococcus aureus ST398 Clone with Distinct Genomic and Cell Adhesion Properties

Anne-Catrin Uhlemann; Stephen F. Porcella; S. Trivedi; Sean B. Sullivan; Cory Hafer; A. D. Kennedy; K. D. Barbian; A. J. McCarthy; C. Street; D. L. Hirschberg; W. I. Lipkin; J. A. Lindsay; Frank R. DeLeo; Franklin D. Lowy

ABSTRACT A methicillin-resistant Staphylococcus aureus (MRSA) clone known as ST398 has emerged as a major cause of acute infections in individuals who have close contact with livestock. More recently, the emergence of an animal-independent ST398 methicillin-sensitive S. aureus (MSSA) clone has been documented in several countries. However, the limited surveillance of MSSA has precluded an accurate assessment of the global spread of ST398 and its clinical relevance. Here we provide evidence that ST398 is a frequent source of MSSA infections in northern Manhattan and is readily transmitted between individuals in households. This contrasts with the limited transmissibility of livestock-associated ST398 (LA-ST398) MRSA strains between humans. Our whole-genome sequence analysis revealed that the chromosome of the human-associated ST398 MSSA clone is smaller than that of the LA-ST398 MRSA reference strain S0385, due mainly to fewer mobile genetic elements (MGEs). In contrast, human ST398 MSSA isolates harbored the prophage φ3 and the human-specific immune evasion cluster (IEC) genes chp and scn. While most of the core genome was conserved between the human ST398 MSSA clone and S0385, these strains differed substantially in their repertoire and composition of intact adhesion genes. These genetic changes were associated with significantly enhanced adhesion of human ST398 MSSA isolates to human skin keratinocytes and keratin. We propose that the human ST398 MSSA clone can spread independent of animal contact using an optimized repertoire of MGEs and adhesion molecules adapted to transmission among humans. IMPORTANCE Staphylococcus aureus strains have generally been considered to be species specific. However, cross-species transfers of S. aureus clones, such as ST398 methicillin-resistant S. aureus (MRSA), from swine to humans have been reported. Recently, we observed the emergence of ST398 methicillin-susceptible S. aureus (MSSA) as a colonizing strain of humans in northern Manhattan. Here we report that ST398 is a frequent cause of MSSA infections in this urban setting. The ST398 MSSA clone was readily transmitted within households, independent of animal contact. We discovered that human ST398 MSSA genomes were smaller than that of the LA-ST398 strain S0385 due to fewer mobile genetic elements. Human and LA-ST398 strains also differed in their composition of adhesion genes and their ability to bind to human skin keratinocytes, providing a potential mechanism of S. aureus host adaptation. Our findings illustrate the importance of implementing molecular surveillance of MSSA given the evidence for the rapid and clinically undetected spread of ST398 MSSA. Staphylococcus aureus strains have generally been considered to be species specific. However, cross-species transfers of S. aureus clones, such as ST398 methicillin-resistant S. aureus (MRSA), from swine to humans have been reported. Recently, we observed the emergence of ST398 methicillin-susceptible S. aureus (MSSA) as a colonizing strain of humans in northern Manhattan. Here we report that ST398 is a frequent cause of MSSA infections in this urban setting. The ST398 MSSA clone was readily transmitted within households, independent of animal contact. We discovered that human ST398 MSSA genomes were smaller than that of the LA-ST398 strain S0385 due to fewer mobile genetic elements. Human and LA-ST398 strains also differed in their composition of adhesion genes and their ability to bind to human skin keratinocytes, providing a potential mechanism of S. aureus host adaptation. Our findings illustrate the importance of implementing molecular surveillance of MSSA given the evidence for the rapid and clinically undetected spread of ST398 MSSA.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York community

Anne-Catrin Uhlemann; Janina Dordel; Justin R. Knox; Kathy E. Raven; Julian Parkhill; Matthew T. G. Holden; Sharon J. Peacock; Franklin D. Lowy

Significance A single clone, pulsed-field gel type USA300, has driven an unprecedented community-associated epidemic of Staphylococcus aureus infections, often affecting young, otherwise healthy individuals. Here we reconstruct the recent evolution and phylogeographic spread of USA300, using whole-genome sequencing of a large collection of infection and colonization isolates from a Manhattan community. We find that households serve as major reservoirs of persistence and transmission. By defining isolate variability within and between households, we localized putative transmission networks in the community. We further identified clonal spread of fluoroquinolone-resistant USA300, suggesting a critical role for antibiotic exposure in the recent evolution of this epidemic strain. Our study provides an important framework for molecular epidemiological investigations into the transmission of opportunistic pathogens that colonize and infect communities. During the last 2 decades, community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains have dramatically increased the global burden of S. aureus infections. The pandemic sequence type (ST)8/pulsed-field gel type USA300 is the dominant CA-MRSA clone in the United States, but its evolutionary history and basis for biological success are incompletely understood. Here, we use whole-genome sequencing of 387 ST8 isolates drawn from an epidemiological network of CA-MRSA infections and colonizations in northern Manhattan to explore short-term evolution and transmission patterns. Phylogenetic analysis predicted that USA300 diverged from a most common recent ancestor around 1993. We found evidence for multiple introductions of USA300 and reconstructed the phylogeographic spread of isolates across neighborhoods. Using pair-wise single-nucleotide polymorphism distances as a measure of genetic relatedness between isolates, we observed that most USA300 isolates had become endemic in households, indicating their critical role as reservoirs for transmission and diversification. Using the maximum single-nucleotide polymorphism variability of isolates from within households as a threshold, we identified several possible transmission networks beyond households. Our study also revealed the evolution of a fluoroquinolone-resistant subpopulation in the mid-1990s and its subsequent expansion at a time of high-frequency outpatient antibiotic use. This high-resolution phylogenetic analysis of ST8 has documented the genomic changes associated with USA300 evolution and how some of its recent evolution has been shaped by antibiotic use. By integrating whole-genome sequencing with detailed epidemiological analyses, our study provides an important framework for delineating the full diversity and spread of USA300 and other emerging pathogens in large urban community populations.


Infection, Genetics and Evolution | 2014

Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus

Anne-Catrin Uhlemann; Michael Otto; Franklin D. Lowy; Frank R. DeLeo

Staphylococcus aureus is a prominent cause of human infections globally. The high prevalence of infections is compounded by antibiotic resistance--a significant problem for treatment. Methicillin-resistant S. aureus (MRSA) is endemic in hospitals and healthcare facilities worldwide, and is an increasingly common cause of community-associated bacterial infections in industrialized countries. Although much focus is placed on the role of S. aureus as a human pathogen, it is in fact a human commensal organism that has had a relatively long coexistence with the human host. Many S. aureus infections can be explained by host susceptibility or other predisposing risk factors. On the other hand, the emergence/re-emergence of successful S. aureus clones (referred to as epidemic waves) suggests a rapid bacterial adaption and evolution, which includes the emergence of antibiotic resistance and increased virulence and/or transmissibility. It is within this context that we review our understanding of selected S. aureus epidemic waves, and highlight the use of genome sequencing as a means to better understand the evolution of each lineage.


PLOS ONE | 2011

The Environment as an Unrecognized Reservoir for Community-Associated Methicillin Resistant Staphylococcus aureus USA300: A Case-Control Study

Anne-Catrin Uhlemann; Justin Knox; Maureen Miller; Cory Hafer; Glenny Vasquez; Megan Ryan; Peter Vavagiakis; Qiuhu Shi; Franklin D. Lowy

Background Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are spreading, but the source of infections in non-epidemic settings remains poorly defined. Methods We carried out a community-based, case-control study investigating socio-demographic risk factors and infectious reservoirs associated with MRSA infections. Case patients presented with CA-MRSA infections to a New York hospital. Age-matched controls without infections were randomly selected from the hospitals Dental Clinic patient population. During a home visit, case and control subjects completed a questionnaire, nasal swabs were collected from index respondents and household members and standardized environmental surfaces were swabbed. Genotyping was performed on S. aureus isolates. Results We enrolled 95 case and 95 control subjects. Cases more frequently reported diabetes mellitus and a higher number of skin infections among household members. Among case households, 53 (56%) were environmentally contaminated with S. aureus, compared to 36 (38%) control households (p = .02). MRSA was detected on fomites in 30 (32%) case households and 5 (5%; p<.001) control households. More case patients, 20 (21%) were nasally colonized with MRSA than were control indexes, 2 (2%; p<.001). In a subgroup analysis, the clinical isolate (predominantly USA300), was more commonly detected on environmental surfaces in case households with recurrent MRSA infections (16/36, 44%) than those without (14/58, 24%, p = .04). Conclusions The higher frequency of environmental contamination of case households with S. aureus in general and MRSA in particular implicates this as a potential reservoir for recolonization and increased risk of infection. Environmental colonization may contribute to the community spread of epidemic strains such as USA300.


The Journal of Infectious Diseases | 2005

Amplification of Plasmodium falciparum Multidrug Resistance Gene 1 in Isolates from Gabon

Anne-Catrin Uhlemann; Michael Ramharter; Bertrand Lell; Peter G. Kremsner; Sanjeev Krishna

The study of molecular markers of drug resistance is particularly important in surveillance studies of drugs, such as mefloquine, that still retain efficacy in sub-Saharan Africa yet have encountered resistance elsewhere. In a recent study in Thailand, we identified amplification of the Plasmodium falciparum multidrug resistance gene 1 (pfmdr1) as being the most important predictor of in vitro drug resistance and in vivo failure of mefloquine monotherapy. Here we report amplification of pfmdr1 in >5% of patient samples from Lambarene, Gabon, collected in 1995. None of the samples collected 7 years later showed pfmdr1 amplification, suggesting that parasites with increased numbers of pfmdr1 copies have not substantially spread through the population. Nevertheless, the detection of multicopy pfmdr1 in African parasites suggests a high potential for rapid selection for resistance, implying that mefloquine use in Africa should be considered only as part of combination therapy.


Antimicrobial Agents and Chemotherapy | 2012

Contribution of Selected Gene Mutations to Resistance in Clinical Isolates of Vancomycin-Intermediate Staphylococcus aureus

Cory Hafer; Ying Lin; John Kornblum; Franklin D. Lowy; Anne-Catrin Uhlemann

ABSTRACT Infections with vancomycin-intermediate Staphylococcus aureus (VISA) have been associated with vancomycin treatment failures and poor clinical outcomes. Routine identification of clinical isolates with increased vancomycin MICs remains challenging, and no molecular marker exists to aid in diagnosis of VISA strains. We tested vancomycin susceptibilities by using microscan, Etest, and population analyses in a collection of putative VISA, methicillin-resistant S. aureus, and methicillin-sensitive S. aureus (VSSA) infectious isolates from community- or hospital-associated S. aureus infections (n = 77) and identified 22 VISA and 9 heterogeneous VISA (hVISA) isolates. Sequencing of VISA candidate loci vraS, vraR, yvqF, graR, graS, walR, walK, and rpoB revealed a high diversity of nonsynonymous single-nucleotide polymorphisms (SNPs). For vraS, vraR, yvqF, walK, and rpoB, SNPs were more frequently present in VISA and hVISA than in VSSA isolates, whereas mutations in graR, graS, and walR were exclusively detected in VISA isolates. For each of the individual loci, SNPs were only detected in about half of the VISA isolates. All but one VISA isolate had at least one SNP in any of the genes sequenced, and isolates with an MIC of 6 or 8 μg/ml harbored at least 2 SNPs. Overall, increasing vancomycin MICs were paralleled by a higher proportion of isolates with SNPs. Depending on the clonal background, SNPs appeared to preferentially accumulate in vraS and vraR for sequence type 8 (ST8) and in walK and walR for ST5 isolates. Taken together, by comparing VISA, hVISA, and VSSA controls, we observed preferential clustering of SNPs in VISA candidate genes, with an unexpectedly high diversity across these loci. Our results support a polygenetic etiology of VISA.


Mbio | 2013

Emergence of the Epidemic Methicillin-Resistant Staphylococcus aureus Strain USA300 Coincides with Horizontal Transfer of the Arginine Catabolic Mobile Element and speG-mediated Adaptations for Survival on Skin

Paul J. Planet; Samuel J. LaRussa; Ali Dana; Hannah Smith; Amy Xu; Chanelle Ryan; Anne-Catrin Uhlemann; Sam Boundy; Julia Goldberg; Apurva Narechania; Ritwij Kulkarni; Adam J. Ratner; Joan A. Geoghegan; Sergios-Orestis Kolokotronis; Alice Prince

ABSTRACT The arginine catabolic mobile element (ACME) is the largest genomic region distinguishing epidemic USA300 strains of methicillin-resistant Staphylococcus aureus (MRSA) from other S. aureus strains. However, the functional relevance of ACME to infection and disease has remained unclear. Using phylogenetic analysis, we have shown that the modular segments of ACME were assembled into a single genetic locus in Staphylococcus epidermidis and then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event. Acquisition of one ACME gene, speG, allowed USA300 strains to withstand levels of polyamines (e.g., spermidine) produced in skin that are toxic to other closely related S. aureus strains. speG-mediated polyamine tolerance also enhanced biofilm formation, adherence to fibrinogen/fibronectin, and resistance to antibiotic and keratinocyte-mediated killing. We suggest that these properties gave USA300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone. IMPORTANCE Over the past 15 years, methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem. It is likely that adaptations in specific MRSA lineages (e.g., USA300) drove the spread of MRSA across the United States and allowed it to replace other, less-virulent S. aureus strains. We suggest that one major factor in the evolutionary success of MRSA may have been the acquisition of a gene (speG) that allows S. aureus to evade the toxicity of polyamines (e.g., spermidine and spermine) that are produced in human skin. Polyamine tolerance likely gave MRSA multiple fitness advantages, including the formation of more-robust biofilms, increased adherence to host tissues, and resistance to antibiotics and killing by human skin cells. Over the past 15 years, methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem. It is likely that adaptations in specific MRSA lineages (e.g., USA300) drove the spread of MRSA across the United States and allowed it to replace other, less-virulent S. aureus strains. We suggest that one major factor in the evolutionary success of MRSA may have been the acquisition of a gene (speG) that allows S. aureus to evade the toxicity of polyamines (e.g., spermidine and spermine) that are produced in human skin. Polyamine tolerance likely gave MRSA multiple fitness advantages, including the formation of more-robust biofilms, increased adherence to host tissues, and resistance to antibiotics and killing by human skin cells.


Antimicrobial Agents and Chemotherapy | 2010

Investigations into the Role of the Plasmodium falciparum SERCA (PfATP6) L263E Mutation in Artemisinin Action and Resistance

Stephanie G. Valderramos; Daniel Scanfeld; Anne-Catrin Uhlemann; David A. Fidock; Sanjeev Krishna

ABSTRACT Artemisinin-based combination therapies (ACTs) are highly effective for the treatment of Plasmodium falciparum malaria, yet their sustained efficacy is threatened by the potential spread of parasite resistance. Recent studies have provided evidence that artemisinins can inhibit the function of PfATP6, the P. falciparum ortholog of the ER calcium pump SERCA, when expressed in Xenopus laevis oocytes. Inhibition was significantly reduced in an L263E variant, which introduced the mammalian residue into a putative drug-binding pocket. To test the hypothesis that this single mutation could decrease P. falciparum susceptibility to artemisinins, we implemented an allelic-exchange strategy to replace the wild-type pfatp6 allele by a variant allele encoding L263E. Transfected P. falciparum clones were screened by PCR analysis for disruption of the endogenous locus and introduction of the mutant L263E allele under the transcriptional control of a calmodulin promoter. Expression of the mutant allele was demonstrated by reverse transcriptase (RT) PCR and verified by sequence analysis. Parasite clones expressing wild-type or L263E variant PfATP6 showed no significant difference in 50% inhibitory concentrations (IC50s) for artemisinin or its derivatives dihydroartemisinin and artesunate. Nonetheless, hierarchical clustering analysis revealed a trend toward reduced susceptibility that neared significance (artemisinin, P ≈ 0.1; dihydroartemisinin, P = 0.053 and P = 0.085; and artesunate, P = 0.082 and P = 0.162 for the D10 and 7G8 lines, respectively). Notable differences in the distribution of normalized IC50s provided evidence of decreased responsiveness to artemisinin and dihydroartemisinin (P = 0.02 for the D10 and 7G8 lines), but not to artesunate in parasites expressing mutant PfATP6.


Antimicrobial Agents and Chemotherapy | 2007

Mechanism of Antimalarial Action of the Synthetic Trioxolane RBX11160 (OZ277)

Anne-Catrin Uhlemann; Sergio Wittlin; Hugues Matile; Leyla Y. Bustamante; Sanjeev Krishna

ABSTRACT RBX11160 (OZ277) is a fully synthetic peroxidic antimalarial in clinical development. To study the possible mechanisms of action of RBX11160, we have examined its ability to inhibit PfATP6, a sarcoplasmic reticulum calcium ATPase and proposed target for semisynthetic peroxidic artemisinin derivatives. RBX11160 inhibits PfATP6 (apparent half-maximal inhibitory constant = 7,700 nM) less potently than artemisinin (79 nM). Inhibition of PfATP6 is abrogated by desferrioxamine, an iron-chelating agent. Consistent with this finding, the killing of Plasmodium falciparum organisms by RBX11160 in vitro is antagonized by desferrioxamine. Artesunate and RBX11160 also act antagonistically against P. falciparum in vitro. A fluorescent derivative of RBX11160 localizes to the parasite cytosol in some parasites and to the food vacuole in other parasites. These data demonstrate that there are both similarities and differences between the antimalarial properties of RBX11160 and those of semisynthetic antimalarials such as artesunate and artemisinin.

Collaboration


Dive into the Anne-Catrin Uhlemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Gomez-Simmonds

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sean B. Sullivan

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Susan Whittier

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Medini K. Annavajhala

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madeleine G. Sowash

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marla J. Giddins

Columbia University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge