Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne D. Yoder is active.

Publication


Featured researches published by Anne D. Yoder.


Systematic Biology | 2001

Failure of the ILD to Determine Data Combinability for Slow Loris Phylogeny

Anne D. Yoder; Jodi A. Irwin; Bret A. Payseur

Tests for incongruence as an indicator of among-data partition conflict have played an important role in conditional data combination. When such tests reveal significant incongruence, this has been interpreted as a rationale for not combining data into a single phylogenetic analysis. In this study of lorisiform phylogeny, we use the incongruence length difference (ILD) test to assess conflict among three independent data sets. A large morphological data set and two unlinked molecular data sets--the mitochondrial cytochrome b gene and the nuclear interphotoreceptor retinoid binding protein (exon 1)--are analyzed with various optimality criteria and weighting mechanisms to determine the phylogenetic relationships among slow lorises (Primates, Loridae). When analyzed separately, the morphological data show impressive statistical support for a monophyletic Loridae. Both molecular data sets resolve the Loridae as paraphyletic, though with different branching orders depending on the optimality criterion or character weighting used. When the three data partitions are analyzed in various combinations, an inverse relationship between congruence and phylogenetic accuracy is observed. Nearly all combined analyses that recover monophyly indicate strong data partition incongruence (P = 0.00005 in the most extreme case), whereas all analyses that recover paraphyly indicate lack of significant incongruence. Numerous lines of evidence verify that monophyly is the accurate phylogenetic result. Therefore, this study contributes to a growing body of information affirming that measures of incongruence should not be used as indicators of data set combinability.


Nature | 2003

Single origin of Malagasy Carnivora from an African ancestor.

Anne D. Yoder; Melissa M. Burns; Sarah Zehr; Thomas Delefosse; Géraldine Veron; Steven M. Goodman; John J. Flynn

The Carnivora are one of only four orders of terrestrial mammals living in Madagascar today. All four (carnivorans, primates, rodents and lipotyphlan insectivores) are placental mammals with limited means for dispersal, yet they occur on a large island that has been surrounded by a formidable oceanic barrier for at least 88 million years, predating the age of origin for any of these groups. Even so, as many as four colonizations of Madagascar have been proposed for the Carnivora alone. The mystery of the islands mammalian origins is confounded by its poor Tertiary fossil record, which leaves us with no direct means for estimating dates of initial diversification. Here we use a multi-gene phylogenetic analysis to show that Malagasy carnivorans are monophyletic and thus the product of a single colonization of Madagascar by an African ancestor. Furthermore, a bayesian analysis of divergence ages for Malagasy carnivorans and lemuriforms indicates that their respective colonizations were temporally separated by tens of millions of years. We therefore conclude that a single event, such as vicariance or common dispersal, cannot explain the presence of both groups in Madagascar.


Systematic Biology | 2003

Comparison of likelihood and Bayesian methods for estimating divergence times using multiple gene Loci and calibration points, with application to a radiation of cute-looking mouse lemur species.

Ziheng Yang; Anne D. Yoder

Divergence time and substitution rate are seriously confounded in phylogenetic analysis, making it difficult to estimate divergence times when the molecular clock (rate constancy among lineages) is violated. This problem can be alleviated to some extent by analyzing multiple gene loci simultaneously and by using multiple calibration points. While different genes may have different patterns of evolutionary rate change, they share the same divergence times. Indeed, the fact that each gene may violate the molecular clock differently leads to the advantage of simultaneous analysis of multiple loci. Multiple calibration points provide the means for characterizing the local evolutionary rates on the phylogeny. In this paper, we extend previous likelihood models of local molecular clock for estimating species divergence times to accommodate multiple calibration points and multiple genes. Heterogeneity among different genes in evolutionary rate and in substitution process is accounted for by the models. We apply the likelihood models to analyze two mitochondrial protein-coding genes, cytochrome oxidase II and cytochrome b, to estimate divergence times of Malagasy mouse lemurs and related outgroups. The likelihood method is compared with the Bayes method of Thorne et al. (1998, Mol. Biol. Evol. 15:1647-1657), which uses a probabilistic model to describe the change in evolutionary rate over time and uses the Markov chain Monte Carlo procedure to derive the posterior distribution of rates and times. Our likelihood implementation has the drawbacks of failing to accommodate uncertainties in fossil calibrations and of requiring the researcher to classify branches on the tree into different rate groups. Both problems are avoided in the Bayes method. Despite the differences in the two methods, however, data partitions and model assumptions had the greatest impact on date estimation. The three codon positions have very different substitution rates and evolutionary dynamics, and assumptions in the substitution model affect date estimation in both likelihood and Bayes analyses. The results demonstrate that the separate analysis is unreliable, with dates variable among codon positions and between methods, and that the combined analysis is much more reliable. When the three codon positions were analyzed simultaneously under the most realistic models using all available calibration information, the two methods produced similar results. The divergence of the mouse lemurs is dated to be around 7-10 million years ago, indicating a surprisingly early species radiation for such a morphologically uniform group of primates.


Molecular Ecology | 2004

Divergence dates for Malagasy lemurs estimated from multiple gene loci: geological and evolutionary context

Anne D. Yoder; Ziheng Yang

The lemurs of Madagascar are a unique radiation of primates that show an extraordinary diversity of lifestyles, morphologies and behaviours. However, very little is known about the relative antiquity of lemuriform clades due to the lack of terrestrial fossils for the Tertiary of Madagascar. Here, we employ a Bayesian method to estimate divergence dates within the lemuriform radiation using several unlinked gene loci and multiple fossil calibrations outside the lemuriform clade. Two mitochondrial genes (cytochrome oxidase II and cytochrome b), two nuclear introns (transthyretin intron 1 and von Willebrand factor gene intron 11) and one nuclear exon (interphotoreceptor retinoid binding protein, exon 1) are used in separate and combined analyses. The genes differ in taxon sampling and evolutionary characteristics but produce congruent date estimates. Credibility intervals narrow considerably in combined analyses relative to separate analyses due to the increased amount of data. We also test the relative effects of multiple vs. single calibration points, finding that, when only single calibration points are employed, divergence dates are systematically underestimated. For the mitochondrial DNA data set, we investigate the effects of sampling density within the mouse lemur radiation (genus Microcebus). When only two representative species are included, estimated dates throughout the phylogeny are more recent than with the complete‐species sample, with basal nodes less affected than recent nodes. The difference appears to be due to the manner in which priors on node ages are constructed in the two analyses. In nearly all analyses, the age of the lemuriform clade is estimated to be approximately 62–65 Ma, with initial radiation of mouse lemurs and true lemurs (genus Eulemur) occurring approximately 8–12 Ma. The antiquity of the mouse lemur radiation is surprising given the near uniform morphology among species. Moreover, the observation that mouse lemurs and true lemurs are of similar ages suggests discrepancies in rates of morphological, behavioural and physiological evolution in the two clades, particularly with regard to characteristics of sexual signalling. These differences appear to correlate with the nocturnal vs. diurnal lifestyles, respectively, of these two primate groups.


Journal of Molecular Evolution | 1999

Estimation of the transition/transversion rate bias and species sampling.

Ziheng Yang; Anne D. Yoder

Abstract. The transition/transversion (ti/tv) rate ratios are estimated by pairwise sequence comparison and joint likelihood analysis using mitochondrial cytochrome b genes of 28 primate species, representing both the Strepsirrhini (lemurs and lories) and the Anthropoidea (monkeys, apes, and humans). Pairwise comparison reveals a strong negative correlation between estimates of the ti/tv ratio and the sequence distance, even when both are corrected for multiple substitutions. The maximum-likelihood estimate of the ti/tv ratio changes with the species included in the analysis. The ti/tv bias within the lemuriform taxa is found to be as strong as in the anthropoids, in contradiction to an earlier study which sampled only one lemuriform. Simulations show the surprising result that both the pairwise correction method and the joint likelihood analysis tend to overcorrect for multiple substitutions and overestimate the ti/tv ratio, especially at low sequence divergence. The bias, however, is not large enough to account for the observed patterns. Nucleotide frequency biases, variation of substitution rates among sites, and different evolutionary dynamics at the three codon positions can be ruled out as possible causes. The likelihood-ratio test suggests that the ti/tv rate ratios may be variable among evolutionary lineages. Without any biological evidence for such a variation, however, we are left with no plausible explanations for the observed patterns other than a possible saturation effect due to the unrealistic nature of the model assumed.


Genome Research | 2008

Development and application of a phylogenomic toolkit: Resolving the evolutionary history of Madagascar’s lemurs

Julie E. Horvath; David W. Weisrock; Stephanie L. Embry; Isabella Fiorentino; James P. Balhoff; Peter M. Kappeler; Gregory A. Wray; Huntington F. Willard; Anne D. Yoder

Lemurs and the other strepsirrhine primates are of great interest to the primate genomics community due to their phylogenetic placement as the sister lineage to all other primates. Previous attempts to resolve the phylogeny of lemurs employed limited mitochondrial or small nuclear data sets, with many relationships poorly supported or entirely unresolved. We used genomic resources to develop 11 novel markers from nine chromosomes, representing approximately 9 kb of nuclear sequence data. In combination with previously published nuclear and mitochondrial loci, this yields a data set of more than 16 kb and adds approximately 275 kb of DNA sequence to current databases. Our phylogenetic analyses confirm hypotheses of lemuriform monophyly and provide robust resolution of the phylogenetic relationships among the five lemuriform families. We verify that the genus Daubentonia is the sister lineage to all other lemurs. The Cheirogaleidae and Lepilemuridae are sister taxa and together form the sister lineage to the Indriidae; this clade is the sister lineage to the Lemuridae. Divergence time estimates indicate that lemurs are an ancient group, with their initial diversification occurring around the Cretaceous-Tertiary boundary. Given the power of this data set to resolve branches in a notoriously problematic area of primate phylogeny, we anticipate that our phylogenomic toolkit will be of value to other studies of primate phylogeny and diversification. Moreover, the methods applied will be broadly applicable to other taxonomic groups where phylogenetic relationships have been notoriously difficult to resolve.


PLOS ONE | 2010

Delimiting Species without Nuclear Monophyly in Madagascar's Mouse Lemurs

David W. Weisrock; Rodin M. Rasoloarison; Isabella Fiorentino; José M. Ralison; Steven M. Goodman; Peter M. Kappeler; Anne D. Yoder

Background Speciation begins when populations become genetically separated through a substantial reduction in gene flow, and it is at this point that a genetically cohesive set of populations attain the sole property of species: the independent evolution of a population-level lineage. The comprehensive delimitation of species within biodiversity hotspots, regardless of their level of divergence, is important for understanding the factors that drive the diversification of biota and for identifying them as targets for conservation. However, delimiting recently diverged species is challenging due to insufficient time for the differential evolution of characters—including morphological differences, reproductive isolation, and gene tree monophyly—that are typically used as evidence for separately evolving lineages. Methodology In this study, we assembled multiple lines of evidence from the analysis of mtDNA and nDNA sequence data for the delimitation of a high diversity of cryptically diverged population-level mouse lemur lineages across the island of Madagascar. Our study uses a multi-faceted approach that applies phylogenetic, population genetic, and genealogical analysis for recognizing lineage diversity and presents the most thoroughly sampled species delimitation of mouse lemur ever performed. Conclusions The resolution of a large number of geographically defined clades in the mtDNA gene tree provides strong initial evidence for recognizing a high diversity of population-level lineages in mouse lemurs. We find additional support for lineage recognition in the striking concordance between mtDNA clades and patterns of nuclear population structure. Lineages identified using these two sources of evidence also exhibit patterns of population divergence according to genealogical exclusivity estimates. Mouse lemur lineage diversity is reflected in both a geographically fine-scaled pattern of population divergence within established and geographically widespread taxa, as well as newly resolved patterns of micro-endemism revealed through expanded field sampling into previously poorly and well-sampled regions.


International Journal of Plant Sciences | 2003

The Phylogeny of Rosoideae (Rosaceae) Based on Sequences of the Internal Transcribed Spacers (ITS) of Nuclear Ribosomal DNA and the trnL/F Region of Chloroplast DNA

Torsten Eriksson; Malin S. Hibbs; Anne D. Yoder; Charles F. Delwiche; Michael J. Donoghue

The phylogeny of Rosoideae was investigated using 44 species. Here we report new sequence data from the chloroplast trnL/F region as well as an increased sample of species. The analysis of these new data, along with previously used data from the nuclear ribosomal internal transcribed spacers (ITS), significantly increased resolution as well as confidence for Rosoideae phylogeny. Using both Bayesian inference and parsimony methods, we conducted analyses on the data sets separately and in combination. The resulting phylogenies are congruent with all well‐supported clades of Rosoideae found in previous analyses of ITS or rbcL data. The support for these and other clades is improved, and we consider several clades to be supported well enough to be named. The following clades are given phylogenetic definitions: Sanguisorbeae and its subclades Agrimoniinae and Sanguisorbinae, Potentilleae and its subclades Fragariinae and Potentilla, Roperculina (Rosa + Sanguisorbeae + Potentilleae), and Sanpotina (Sanguisorbeae + Potentilleae). Potentilla includes the Potentilla anserina clade (Argentina) in our trnL/F and combined analyses, but this relationship is not resolved by ITS alone. The previously used genera Duchesnea (Potentilla indica), Horkelia, and Ivesia are strongly supported as nested within Potentilla. Comarum (Potentilla palustris and Potentilla salesowianum), Sibbaldiopsis (Potentilla tridentata), Dasiphora (Potentilla fruticosa), and Drymocallis (Potentilla arguta) join Alchemilla, Aphanes, Sibbaldia, Chamaerhodos, and Fragaria in the well‐supported Fragariinae clade outside of Potentilla. The monophyly of both Potentilleae and Sanguisorbeae is well supported, and the clades correspond to previously named tribes with the exception of Alchemilla and its segregate Aphanes, which are nested within Potentilleae instead of in Sanguisorbeae. The position of Rubus is still not securely resolved.


Genome Research | 2012

Comparative RNA sequencing reveals substantial genetic variation in endangered primates

George H. Perry; Páll Melsted; John C. Marioni; Ying Wang; Russell Bainer; Joseph K. Pickrell; Katelyn Michelini; Sarah Zehr; Anne D. Yoder; Matthew Stephens; Jonathan K. Pritchard; Yoav Gilad

Comparative genomic studies in primates have yielded important insights into the evolutionary forces that shape genetic diversity and revealed the likely genetic basis for certain species-specific adaptations. To date, however, these studies have focused on only a small number of species. For the majority of nonhuman primates, including some of the most critically endangered, genome-level data are not yet available. In this study, we have taken the first steps toward addressing this gap by sequencing RNA from the livers of multiple individuals from each of 16 mammalian species, including humans and 11 nonhuman primates. Of the nonhuman primate species, five are lemurs and two are lorisoids, for which little or no genomic data were previously available. To analyze these data, we developed a method for de novo assembly and alignment of orthologous gene sequences across species. We assembled an average of 5721 gene sequences per species and characterized diversity and divergence of both gene sequences and gene expression levels. We identified patterns of variation that are consistent with the action of positive or directional selection, including an 18-fold enrichment of peroxisomal genes among genes whose regulation likely evolved under directional selection in the ancestral primate lineage. Importantly, we found no relationship between genetic diversity and endangered status, with the two most endangered species in our study, the black and white ruffed lemur and the Coquerels sifaka, having the highest genetic diversity among all primates. Our observations imply that many endangered lemur populations still harbor considerable genetic variation. Timely efforts to conserve these species alongside their habitats have, therefore, strong potential to achieve long-term success.


Evolutionary Anthropology | 1997

Back to the future: A synthesis of strepsirrhine systematics

Anne D. Yoder

The stepsirrhine primates, defined here as living tooth‐combed primates, their immediate ancestor, and all of its descendants, are a diverse assemblage of mammals, viewed by some as exemplars of the richness of evolutionary innovation and by others as uninteresting “primitive” primates. Fortunately, the former view has taken precedence in recent years. The Strepsirrhini have been central to numerous debates touching on key issues such as the congruence of phylogeny to biogeography, the reliability of morphological characters for phylogeny reconstruction, and the relationship of living lineages to fossil lineages. Thanks to important theoretical and methodological advances, particularly within the arena of genetics, a robust picture of strepsirrhine phylogeny is emerging that casts light on these and numerous other evolutionary questions.

Collaboration


Dive into the Anne D. Yoder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven M. Goodman

World Wide Fund for Nature

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge