Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Debant is active.

Publication


Featured researches published by Anne Debant.


Cell | 2001

EphA Receptors Regulate Growth Cone Dynamics through the Novel Guanine Nucleotide Exchange Factor Ephexin

Steven M. Shamah; Michael Z. Lin; Jeffrey L. Goldberg; Soline Estrach; Mustafa Sahin; Linda Hu; Mihaela H. Bazalakova; Rachel L. Neve; Gabriel Corfas; Anne Debant; Michael E. Greenberg

Eph receptors transduce short-range repulsive signals for axon guidance by modulating actin dynamics within growth cones. We report the cloning and characterization of ephexin, a novel Eph receptor-interacting protein that is a member of the Dbl family of guanine nucleotide exchange factors (GEFs) for Rho GTPases. Ephrin-A stimulation of EphA receptors modulates the activity of ephexin leading to RhoA activation, Cdc42 and Rac1 inhibition, and cell morphology changes. In addition, expression of a mutant form of ephexin in primary neurons interferes with ephrin-A-induced growth cone collapse. The association of ephexin with Eph receptors constitutes a molecular link between Eph receptors and the actin cytoskeleton and provides a novel mechanism for achieving highly localized regulation of growth cone motility.


Cell | 2000

Trio Combines with Dock to Regulate Pak Activity during Photoreceptor Axon Pathfinding in Drosophila

Timothy P. Newsome; Susanne Schmidt; Georg Dietzl; Krystyna Keleman; Bengt Åsling; Anne Debant; Barry J. Dickson

Correct pathfinding by Drosophila photoreceptor axons requires recruitment of p21-activated kinase (Pak) to the membrane by the SH2-SH3 adaptor Dock. Here, we identify the guanine nucleotide exchange factor (GEF) Trio as another essential component in photoreceptor axon guidance. Regulated exchange activity of one of the two Trio GEF domains is critical for accurate pathfinding. This GEF domain activates Rac, which in turn activates Pak. Mutations in trio result in projection defects similar to those observed in both Pak and dock mutants, and trio interacts genetically with Rac, Pak, and dock. These data define a signaling pathway from Trio to Rac to Pak that links guidance receptors to the growth cone cytoskeleton. We propose that distinct signals transduced via Trio and Dock act combinatorially to activate Pak in spatially restricted domains within the growth cone, thereby controlling the direction of axon extension.


Neuron | 2005

Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse

Mustafa Sahin; Paul L. Greer; Michael Z. Lin; Heather K. Poucher; Johann K. Eberhart; Susanne Schmidt; Tracy M. Wright; Steven M. Shamah; Sinead O'Connell; Christopher W. Cowan; Linda Hu; Jeffrey L. Goldberg; Anne Debant; Gabriel Corfas; Catherine E. Krull; Michael E. Greenberg

Ephs regulate growth cone repulsion, a process controlled by the actin cytoskeleton. The guanine nucleotide exchange factor (GEF) ephexin1 interacts with EphA4 and has been suggested to mediate the effect of EphA on the activity of Rho GTPases, key regulators of the cytoskeleton and axon guidance. Using cultured ephexin1-/- mouse neurons and RNA interference in the chick, we report that ephexin1 is required for normal axon outgrowth and ephrin-dependent axon repulsion. Ephexin1 becomes tyrosine phosphorylated in response to EphA signaling in neurons, and this phosphorylation event is required for growth cone collapse. Tyrosine phosphorylation of ephexin1 enhances ephexin1s GEF activity toward RhoA while not altering its activity toward Rac1 or Cdc42, thus changing the balance of GTPase activities. These findings reveal that ephexin1 plays a role in axon guidance and is regulated by a switch mechanism that is specifically tailored to control Eph-mediated growth cone collapse.


Nature Cell Biology | 2000

The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin.

Jean-Michel Bellanger; Catherine Astier; Claude Sardet; Yasutaka Ohta; Thomas P. Stossel; Anne Debant

Rho GTPases control actin reorganization and many other cellular functions. Guanine nucleotide-exchange factors (GEFs) activate Rho GTPases by promoting their exchange of GDP for GTP. Trio is a unique Rho GEF, because it has separate GEF domains, GEFD1 and GEFD2, that control the GTPases RhoG/Rac1 and RhoA, respectively. Dbl-homology (DH) domains that are common to GEFs catalyse nucleotide exchange, and pleckstrin-homology (PH) domains localize Rho GEFs near their downstream targets. Here we show that Trio GEFD1 interacts through its PH domain with the actin-filament-crosslinking protein filamin, and localizes with endogenous filamin in HeLa cells. Trio GEFD1 induces actin-based ruffling in filamin-expressing, but not filamin-deficient, cells and in cells transfected with a filamin construct that lacks the Trio-binding domain. In addition, Trio GEFD1 exchange activity is not affected by filamin binding. Our results indicate that filamin, as a molecular target of Trio, may be a scaffold for the spatial organization of Rho-GTPase-mediated signalling pathways.


Current Biology | 2002

The Human Rho-GEF Trio and Its Target GTPase RhoG Are Involved in the NGF Pathway, Leading to Neurite Outgrowth

Soline Estrach; Susanne Schmidt; Sylvie Diriong; Aubin Penna; Anne Blangy; Philippe Fort; Anne Debant

Rho-GTPases control a wide range of physiological processes by regulating actin cytoskeleton dynamics. Numerous studies on neuronal cell lines have established that Rac, Cdc42, and RhoG activate neurite extension, while RhoA mediates neurite retraction. Guanine nucleotide exchange factors (GEFs) activate Rho-GTPases by accelerating GDP/GTP exchange. Trio displays two Rho-GEF domains, GEFD1, activating the Rac pathway via RhoG, and GEFD2, acting on RhoA, and contains numerous signaling motifs whose contribution to Trio function has not yet been investigated. Genetic analyses in Drosophila and in Caenorhabditis elegans indicate that Trio is involved in axon guidance and cell motility via a GEFD1-dependent process, suggesting that the activity of its Rho-GEFs is strictly regulated. Here, we show that human Trio induces neurite outgrowth in PC12 cells in a GEFD1-dependent manner. Interestingly, the spectrin repeats and the SH3-1 domain of Trio are essential for GEFD1-mediated neurite outgrowth, revealing an unexpected role for these motifs in Trio function. Moreover, we demonstrate that Trio-induced neurite outgrowth is mediated by the GEFD1-dependent activation of RhoG, previously shown to be part of the NGF (nerve growth factor) pathway. The expression of different Trio mutants interferes with NGF-induced neurite outgrowth, suggesting that Trio may be an upstream regulator of RhoG in this pathway. In addition, we show that Trio protein accumulates under NGF stimulation. Thus, Trio is the first identified Rho-GEF involved in the NGF-differentiation signaling.


Oncogene | 1998

The two guanine nucleotide exchange factor domains of Trio link the Rac1 and the RhoA pathways in vivo

Jean-Michel Bellanger; Jean‐Bernard Lazaro; Sylvie Diriong; Anne Fernandez; Ned Lamb; Anne Debant

Trio contains two functional guanine nucleotide exchange factors (GEF) domains for the Rho-like GTPases and a serine/threonine kinase domain. In vitro, GEF domain 1(GEFD1) is specifically active on Rac1, while GEF domain 2 (GEFD2) targets RhoA. To determine whether Trio could activate Rac1 and RhoA in vivo, we measured the effect of Trio on Mitogen Activated Protein Kinase (MAPK) pathways and cytoskeletal rearrangments events mediated by the two GTPases. We show that: (i) the GEFD1 domain of Trio triggers the MAPK pathway leading to Jun kinase (JNK) activation and the production of membrane ruffles; (ii) co-expression of the TrioGEFD1 domain with a dominant-negative form of Rac blocked JNK induction, whereas a dominant-negative form of Cdc42 did not; (iii) a deletion mutant of TrioGEFD1 lacking a region important for exchange activity could not stimulate JNK activity; (iv) in contrast, the TrioGEFD2 domain does not stimulate JNK activity and induces the formation of stress fibers, as does activated RhoA; (v) furthermore, co-expression of both GEF domains induces simultaneously the formation of ruffles and stress fibers. Trio, therefore represents a unique member of the Rho-GEFs family possessing two functional domains of distinct specificities, that allow it to link Rho and Rac signaling pathway in vivo.


Molecular and Cellular Biology | 2008

Trio Mediates Netrin-1-Induced Rac1 Activation in Axon Outgrowth and Guidance

Anne Briançon-Marjollet; Atefeh Ghogha; Homaira Nawabi; Ibtissem Triki; Camille Auziol; Sylvie Fromont; Chantal Piché; Hervé Enslen; Karim Chebli; Jean-François Cloutier; Valérie Castellani; Anne Debant; Nathalie Lamarche-Vane

ABSTRACT The chemotropic guidance cue netrin-1 promotes neurite outgrowth through its receptor Deleted in Colorectal Cancer (DCC) via activation of Rac1. The guanine nucleotide exchange factor (GEF) linking netrin-1/DCC to Rac1 activation has not yet been identified. Here, we show that the RhoGEF Trio mediates Rac1 activation in netrin-1 signaling. We found that Trio interacts with the netrin-1 receptor DCC in mouse embryonic brains and that netrin-1-induced Rac1 activation in brain is impaired in the absence of Trio. Trio−/− cortical neurons fail to extend neurites in response to netrin-1, while they are able to respond to glutamate. Accordingly, netrin-1-induced commissural axon outgrowth is reduced in Trio−/− spinal cord explants, and the guidance of commissural axons toward the floor plate is affected by the absence of Trio. The anterior commissure is absent in Trio-null embryos, and netrin-1/DCC-dependent axonal projections that form the internal capsule and the corpus callosum are defective in the mutants. Taken together, these findings establish Trio as a GEF that mediates netrin-1 signaling in axon outgrowth and guidance through its ability to activate Rac1.


Journal of Cell Biology | 2004

SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1

Sara Salinas; Anne Briançon-Marjollet; Guillaume Bossis; Marie-Aude Lopez; Marc Piechaczyk; Isabelle Jariel-Encontre; Anne Debant; Robert A. Hipskind

The transcription factor Elk-1 is a nuclear target of mitogen-activated protein kinases and regulates immediate early gene activation by extracellular signals. We show that Elk-1 is also conjugated to SUMO on either lysines 230, 249, or 254. Mutation of all three sites is necessary to fully block SUMOylation in vitro and in vivo. This Elk-1 mutant, Elk-1(3R), shuttles more rapidly to nuclei of Balb/C cells fused to transfected HeLa cells. Coexpression of SUMO-1 or -2 strongly reduces shuttling by Elk-1 without affecting that of Elk-1(3R), indicating that SUMOylation regulates nuclear retention of Elk-1. Accordingly, overexpression of Elk-1(3R) in PC12 cells, where cytoplasmic relocalization of Elk-1 has been linked to differentiation, enhances neurite extension relative to Elk-1. The effect of Elk-1, but not of the 3R mutant, was blocked upon cotransfection with SUMO-1 or -2 and enhanced by coexpression with mutant Ubc-9. Thus, SUMO conjugation is a novel regulator of Elk-1 function through the control of its nuclear-cytoplasmic shuttling.


Development | 2011

A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination.

Timothy F. Plageman; Bharesh K. Chauhan; Christine Yang; Fanny Jaudon; Xun Shang; Yi Zheng; Ming Lou; Anne Debant; Jeffrey D. Hildebrand; Richard A. Lang

Epithelial invagination is a common feature of embryogenesis. An example of invagination morphogenesis occurs during development of the early eye when the lens placode forms the lens pit. This morphogenesis is accompanied by a columnar-to-conical cell shape change (apical constriction or AC) and is known to be dependent on the cytoskeletal protein Shroom3. Because Shroom3-induced AC can be Rock1/2 dependent, we hypothesized that during lens invagination, RhoA, Rock and a RhoA guanine nucleotide exchange factor (RhoA-GEF) would also be required. In this study, we show that Rock activity is required for lens pit invagination and that RhoA activity is required for Shroom3-induced AC. We demonstrate that RhoA, when activated and targeted apically, is sufficient to induce AC and that RhoA plays a key role in Shroom3 apical localization. Furthermore, we identify Trio as a RhoA-GEF required for Shroom3-dependent AC in MDCK cells and in the lens pit. Collectively, these data indicate that a Trio-RhoA-Shroom3 pathway is required for AC during lens pit invagination.


FEBS Letters | 2002

Identification of the first Rho–GEF inhibitor, TRIPα, which targets the RhoA-specific GEF domain of Trio

Susanne Schmidt; Sylvie Diriong; Jean Mery; Eric Fabbrizio; Anne Debant

The Rho–guanine nucleotide exchange factors (Rho–GEFs) remodel the actin cytoskeleton via their Rho–GTPase targets and affect numerous physiological processes such as transformation and cell motility. They are therefore attractive targets to design specific inhibitors that may have therapeutic applications. Trio contains two Rho–GEF domains, GEFD1 and GEFD2, which activate the Rac and RhoA pathways, respectively. Here we have used a genetic screen in yeast to select in vivo peptides coupled to thioredoxin, called aptamers, that could inhibit GEFD2 activity. One aptamer, TRIAPα (TRio Inhibitory APtamer), specifically blocks GEFD2‐exchange activity on RhoA in vitro. The corresponding peptide sequence, TRIPα, inhibits TrioGEFD2‐mediated activation of RhoA in intact cells and specifically reverts the neurite retraction phenotype induced by TrioGEFD2 in PC12 cells. Thus TRIPα is the first Rho–GEF inhibitor isolated so far, and represents an important step in the design of inhibitors for the expanding family of Rho–GEFs.

Collaboration


Dive into the Anne Debant's collaboration.

Top Co-Authors

Avatar

Susanne Schmidt

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Michel Bellanger

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Boudeau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sylvie Diriong

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sylvie Fromont

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Cécile Gauthier-Rouvière

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Fort

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Elodie Portales-Casamar

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Blangy

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge