Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne E. Taylor is active.

Publication


Featured researches published by Anne E. Taylor.


Applied and Environmental Microbiology | 2010

Evidence for Different Contributions of Archaea and Bacteria to the Ammonia-Oxidizing Potential of Diverse Oregon Soils

Anne E. Taylor; Lydia H. Zeglin; Sandra Dooley; David D. Myrold; Peter J. Bottomley

ABSTRACT A method was developed to determine the contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to the nitrification potentials (NPs) of soils taken from forest, pasture, cropped, and fallowed (19 years) lands. Soil slurries were exposed to acetylene to irreversibly inactivate ammonia monooxygenase, and upon the removal of acetylene, the recovery of nitrification potential (RNP) was monitored in the presence and absence of bacterial or eukaryotic protein synthesis inhibitors. For unknown reasons, and despite measureable NPs, RNP did not occur consistently in forest soil samples; however, pasture, cropped, and fallowed soil RNPs commenced after lags that ranged from 12 to 30 h after acetylene removal. Cropped soil RNP was completely prevented by the bacterial protein synthesis inhibitor kanamycin (800 μg/ml), whereas a combination of kanamycin plus gentamicin (800 μg/ml each) only partially prevented the RNP (60%) of fallowed soils. Pasture soil RNP was completely insensitive to either kanamycin, gentamicin, or a combination of the two. Unlike cropped soil, pasture and fallowed soil RNPs occurred at both 30°C and 40°C and without supplemental NH4+ (≤10 μM NH4+ in solution), and pasture soil RNP demonstrated ∼50% insensitivity to 100 μM allyl thiourea (ATU). In addition, fallowed and pasture soil RNPs were insensitive to the fungal inhibitors nystatin and azoxystrobin. This combination of properties suggests that neither fungi nor AOB contributed to pasture soil RNP and that AOA were responsible for the RNP of the pasture soils. Both AOA and AOB may contribute to RNP in fallowed soil, while RNP in cropped soils was dominated by AOB.


The ISME Journal | 2012

Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials

Anne E. Taylor; Lydia H. Zeglin; Thomas A Wanzek; David D. Myrold; Peter J. Bottomley

It is well known that the ratio of ammonia-oxidizing archaea (AOA) and bacteria (AOB) ranges widely in soils, but no data exist on what might influence this ratio, its dynamism, or how changes in relative abundance influences the potential contributions of AOA and AOB to soil nitrification. By sampling intensively from cropped-to-fallowed and fallowed-to-cropped phases of a 2-year wheat/fallow cycle, and adjacent uncultivated long-term fallowed land over a 15-month period in 2010 and 2011, evidence was obtained for seasonal and cropping phase effects on the soil nitrification potential (NP), and on the relative contributions of AOA and AOB to the NP that recovers after acetylene inactivation in the presence and absence of bacterial protein synthesis inhibitors. AOB community composition changed significantly (P⩽0.0001) in response to cropping phase, and there were both seasonal and cropping phase effects on the amoA gene copy numbers of AOA and AOB. Our study showed that the AOA:AOB shifts were generated by a combination of different phenomena: an increase in AOA amoA abundance in unfertilized treatments, compared with their AOA counterparts in the N-fertilized treatment; a larger population of AOB under the N-fertilized treatment compared with the AOB community under unfertilized treatments; and better overall persistence of AOA than AOB in the unfertilized treatments. These data illustrate the complexity of the factors that likely influence the relative contributions of AOA and AOB to nitrification under the various combinations of soil conditions and NH4+-availability that exist in the field.


Applied and Environmental Microbiology | 2013

Use of Aliphatic n-Alkynes To Discriminate Soil Nitrification Activities of Ammonia-Oxidizing Thaumarchaea and Bacteria

Anne E. Taylor; Neeraja Vajrala; Andrew T. Giguere; Alix I. Gitelman; Daniel J. Arp; David D. Myrold; Luis A. Sayavedra-Soto; Peter J. Bottomley

ABSTRACT Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤20 μM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation by two AOB (Nitrosomonas europaea and Nitrosospira multiformis) was quickly and irreversibly inactivated by 1 μM C8 (octyne). Evidence that nitrification carried out by soilborne AOA was also insensitive to octyne was obtained. In incubations (21 or 28 days) of two different whole soils, both acetylene and octyne effectively prevented NH4 +-stimulated increases in AOB population densities, but octyne did not prevent increases in AOA population densities that were prevented by acetylene. Furthermore, octyne-resistant, NH4 +-stimulated net nitrification rates of 2 and 7 μg N/g soil/day persisted throughout the incubation of the two soils. Other evidence that octyne-resistant nitrification was due to AOA included (i) a positive correlation of octyne-resistant nitrification in soil slurries of cropped and noncropped soils with allylthiourea-resistant activity (100 μM) and (ii) the finding that the fraction of octyne-resistant nitrification in soil slurries correlated with the fraction of nitrification that recovered from irreversible acetylene inactivation in the presence of bacterial protein synthesis inhibitors and with the octyne-resistant fraction of NH4 +-saturated net nitrification measured in whole soils. Octyne can be useful in short-term assays to discriminate AOA and AOB contributions to soil nitrification.


Environmental Microbiology Reports | 2011

Bacterial and archaeal amoA gene distribution covaries with soil nitrification properties across a range of land uses.

Lydia H. Zeglin; Anne E. Taylor; David D. Myrold; Peter J. Bottomley

Ammonia-oxidizing bacteria and ammonia-oxidizing archaea are commonly found together in soils, yet the factors influencing their relative distribution and activity remain unclear. We examined archaeal and bacterial amoA gene distribution, and used a novel bioassay to assess archaeal and bacterial contributions to nitrification potentials in soils spanning a range of land uses (forest, pasture, cultivated and long-term fallowed cropland) along a 10 km transect. The assay, which quantifies the extent to which acetylene-inactivated soil nitrification potential recovers (RNP) in the presence of bacterial protein synthesis inhibitors, indicated a significant archaeal contribution to the nitrification potentials of the pasture and long-term fallowed soils. Archaeal amoA gene abundance did not vary significantly among the soils, but bacterial amoA gene abundance did, resulting in archaeal : bacterial amoA abundance ratios ranging from 1.1 ± 0.8 in cultivated soils to 396 ± 176 in pasture soils. Both archaeal and bacterial amoA gene compositions were heterogeneous across the landscape, but differed in their patterns of variability. Archaeal amoA gene distributions were distinct among each of the three main land-use types: forest, pasture and cropland soils. In contrast, bacterial amoA gene composition was distinct in forest and in cultivated cropland, while pasture and long-term fallowed cropland soils were similar. In both pasture and long-term fallowed cropland soils, one phylotype of Nitrosospira cluster 3a was highly abundant. This distinct bacterial amoA gene fingerprint correlated with significant contributions of archaea to RNP of both soils, despite differences in archaeal amoA gene composition between the pasture and fallowed soils. This observation suggests that the factors driving the development of ammonia-oxidizing bacteria community composition might influence the extent of archaeal contribution to soil nitrification.


Applied and Environmental Microbiology | 2015

Inhibitory effects of C2 to C10 1-alkynes on ammonia oxidation in two Nitrososphaera species.

Anne E. Taylor; K. Taylor; B. Tennigkeit; M. Palatinszky; Michaela Stieglmeier; David D. Myrold; Christa Schleper; Michael Wagner; Peter J. Bottomley

ABSTRACT A previous study showed that ammonia oxidation by the Thaumarchaeota Nitrosopumilus maritimus (group 1.1a) was resistant to concentrations of the C8 1-alkyne, octyne, which completely inhibits activity by ammonia-oxidizing bacteria. In this study, the inhibitory effects of octyne and other C2 to C10 1-alkynes were evaluated on the nitrite production activity of two pure culture isolates from Thaumarchaeota group 1.1b, Nitrososphaera viennensis strain EN76 and Nitrososphaera gargensis. Both N. viennensis and N. gargensis were insensitive to concentrations of octyne that cause complete and irreversible inactivation of nitrite production by ammonia-oxidizing bacteria. However, octyne concentrations (≥20 μM) that did not inhibit N. maritimus partially inhibited nitrite production in N. viennensis and N. gargensis in a manner that did not show the characteristics of irreversible inactivation. In contrast to previous studies with an ammonia-oxidizing bacterium, Nitrosomonas europaea, octyne inhibition of N. viennensis was: (i) fully and immediately reversible, (ii) not competitive with NH4 +, and (iii) without effect on the competitive interaction between NH4 + and acetylene. Both N. viennensis and N. gargensis demonstrated the same overall trend in regard to 1-alkyne inhibition as previously observed for N. maritimus, being highly sensitive to ≤C5 alkynes and more resistant to longer-chain length alkynes. Reproducible differences were observed among N. maritimus, N. viennensis, and N. gargensis in regard to the extent of their resistance/sensitivity to C6 and C7 1-alkynes, which may indicate differences in the ammonia monooxygenase binding and catalytic site(s) among the Thaumarchaeota.


The ISME Journal | 2017

Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria

Anne E. Taylor; Andrew T. Giguere; Conor M Zoebelein; David D. Myrold; Peter J. Bottomley

Soil nitrification potential (NP) activities of ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) were evaluated across a temperature gradient (4–42 °C) imposed upon eight soils from four different sites in Oregon and modeled with both the macromolecular rate theory and the square root growth models to quantify the thermodynamic responses. There were significant differences in response by the dominant AOA and AOB contributing to the NPs. The optimal temperatures (Topt) for AOA- and AOB-supported NPs were significantly different (P<0.001), with AOA having Topt>12 °C greater than AOB. The change in heat capacity associated with the temperature dependence of nitrification (ΔCP‡) was correlated with Topt across the eight soils, and the ΔCP‡ of AOB activity was significantly more negative than that of AOA activity (P<0.01). Model results predicted, and confirmatory experiments showed, a significantly lower minimum temperature (Tmin) and different, albeit very similar, maximum temperature (Tmax) values for AOB than for AOA activity. The results also suggested that there may be different forms of AOA AMO that are active over different temperature ranges with different Tmin, but no evidence of multiple Tmin values within the AOB. Fundamental differences in temperature-influenced properties of nitrification driven by AOA and AOB provides support for the idea that the biochemical processes associated with NH3 oxidation in AOA and AOB differ thermodynamically from each other, and that also might account for the difficulties encountered in attempting to model the response of nitrification to temperature change in soil environments.


Frontiers in Microbiology | 2012

A consideration of the relative contributions of different microbial subpopulations to the soil N cycle

Peter J. Bottomley; Anne E. Taylor; David D. Myrold

We examine and discuss literature targeted at identifying “active” subpopulations of soil microbial communities with regard to the factors that affect the balance between mineralization and immobilization/assimilation of N. Whereas a large fraction (≥50%) of soil microbial biomass can immediately respire exogenous substrates, it remains unclear what percentage of both bacterial and fungal populations are capable of expressing their growth potential. The factors controlling the relative amounts of respiratorily responsive biomass versus growth-active biomass will impact the balance between N mineralization and N immobilization. Stable isotope probing of de novo DNA synthesis, and pyrosequence analyses of rRNA:rDNA ratios in soils have identified both numerically dominant and rare microbial taxa showing greatest growth potential. The relative growth responses of numerically dominant or rare members of a soil community could influence the amount of N immobilized into biomass during a “growth” event. Recent studies have used selective antibiotics targeted at protein synthesis to measure the relative contributions of fungi and bacteria to ammonification and NH4+ consumption, and of NH3-oxidizing archaea (AOA) and bacteria (AOB) to NH3 oxidation. Evidence was obtained for bacteria to dominate NH4+ assimilation and for fungi to be involved in both consumption of dissolved organic nitrogen (DON) and its ammonification. Soil conditions, phase of cropping system, NH4+ availability, and soil pH influence the relative contributions of AOA and AOB to soil nitrification. A recent discovery that AOA can ammonify organic N sources and oxidize it to NO2− serves to illustrate roles for AOA in both the production and consumption of NH3/NH4+. Clearly, much remains to be learned about the factors influencing the relative contributions of bacteria, archaea, and fungi to processing organic and inorganic N, and their impact on the balance between mineralization and immobilization of N.


FEMS Microbiology Ecology | 2018

Nitrite-oxidizing activity responds to nitrite accumulation in soil

Andrew T. Giguere; Anne E. Taylor; David D. Myrold; Brett L. Mellbye; Luis A. Sayavedra-Soto; Peter J. Bottomley

ABSTRACT The factors influencing how soil nitrite (NO2−)‐ and ammonia (NH3)‐oxidizing activities remain coupled are unknown. A short‐term study (<48 h) was conducted to examine the dynamics of NO2−‐oxidizing activity and the accumulation of NO2− in three Oregon soils stimulated by the addition of 1 mM NH4+ in soil slurry. Nitrite initially accumulated in all three soils; its subsequent decline or slowing of the accumulation of the NO2− pool by 24 h was accompanied by an increase in the size of the nitrate (NO3−) pool, indicating a change in NO2− oxidation kinetics. Bacterial protein synthesis inhibitors prevented the NO2− pool decline, resulting in a larger accumulation in all three soils. Although no significant increases in NO2−‐oxidizing bacteria nxrA (Nitrobacter) and nxrB (Nitrospira) gene abundances were detected over the time course, maximum NO2− consumption rates increased 2‐fold in the treatment without antibiotics compared to no change with antibiotics. No changes were observed in the apparent half saturation constant (Km) values for NO2− consumption. This study demonstrates phenotypic flexibility among soil NO2− oxidizers, which can undergo protein synthesis‐dependent increases in NO2− consumption rates to match NH3 oxidation rates and recouple nitrification.


Soil Biology & Biochemistry | 2006

Nitrite production by Nitrosomonas europaea and Nitrosospira sp. AV in soils at different solution concentrations of ammonium

Anne E. Taylor; Peter J. Bottomley


Soil Science Society of America Journal | 2015

Nitrification Responses of Soil Ammonia-Oxidizing Archaea and Bacteria to Ammonium Concentrations

Andrew T. Giguere; Anne E. Taylor; David D. Myrold; Peter J. Bottomley

Collaboration


Dive into the Anne E. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge